We present a hierarchical skeleton-guided motion planning algorithm to guide mobile robots. A good skeleton maps the connectivity of the subspace of c-space containing significant degrees of freedom and is able to guide the planner to find the desired solutions fast. However, sometimes the skeleton does not closely represent the free c-space, which often misleads current skeleton-guided planners. The hierarchical skeleton-guided planning strategy gradually relaxes its reliance on the workspace skeleton as C space is sampled, thereby incrementally returning a sub-optimal path, a feature that is not guaranteed in the standard skeleton-guided algorithm. Experimental comparisons to the standard skeleton-guided planners and other lazy planning strategies show significant improvement in roadmap construction run time while maintaining path quality for multi-query problems in cluttered environments.
翻译:我们提出了一个用于引导移动机器人的等级骨骼指导运动规划算法。一个良好的骨架绘制了包含相当自由度的C-空间子空间的连接图,并且能够引导规划者快速找到理想的解决方案。然而,有时骨架并不代表自由的c-空间,因为自由的c-空间常常误导目前的骨骼指导规划者。 等级骨架指导规划战略随着C空间的取样而逐步放松对工作空间骨架的依赖,从而逐步返回一个亚最佳路径,而标准骨架指导算法没有保证这一特征。 与标准的骨架指导规划者和其他懒惰规划战略的实验性比较显示,在路线图施工运行时间中取得了显著改进,同时保持了封闭环境中多孔问题路径的质量。