The sandwiched R\'enyi $\alpha$-divergences of two finite-dimensional quantum states play a distinguished role among the many quantum versions of R\'enyi divergences as the tight quantifiers of the trade-off between the two error probabilities in the strong converse domain of state discrimination. In this paper we show the same for the sandwiched R\'enyi divergences of two normal states on an injective von Neumann algebra, thereby establishing the operational significance of these quantities. Moreover, we show that in this setting, again similarly to the finite-dimensional case, the sandwiched R\'enyi divergences coincide with the regularized measured R\'enyi divergences, another distinctive feature of the former quantities. Our main tool is an approximation theorem (martingale convergence) for the sandwiched R\'enyi divergences, which may be used for the extension of various further results from the finite-dimensional to the von Neumann algebra setting. We also initiate the study of the sandwiched R\'enyi divergences of pairs of states on a $C^*$-algebra, and show that the above operational interpretation, as well as the equality to the regularized measured R\'enyi divergence, holds more generally for pairs of states on a nuclear $C^*$-algebra.
翻译:R\'enyi差异值在许多量子版本的R\'enyi差异值中起着不同的作用,因为R\'enyi差异值是国家歧视的强反面领域两种差错概率之间的权衡的严格量化。在本文中,我们显示了两个正常国家的R\'enyi差异值是相同的,这可以用来扩大从有限度到 von Neumann 代数设置的各种进一步结果。此外,我们在此背景下,同样与有限度案例一样,R\'enyi差异值与正常测量的R\'enyi差异值相吻合,这是以前数量的另一个显著特征。我们的主要工具是调近R\'enyi差异值(martingale 趋同性),这可用于扩大从有限度到 von Neueurmann 代数设置的各种进一步结果。我们还开始研究“R\'enyyi”差异值与正常测量的R\'enyi值差异值相吻合,以美元表示对正常的汇率的汇率的汇率值表示。