In natural language processing (NLP) we always rely on human judgement as the golden quality evaluation method. However, there has been an ongoing debate on how to better evaluate inter-rater reliability (IRR) levels for certain evaluation tasks, such as translation quality evaluation (TQE), especially when the data samples (observations) are very scarce. In this work, we first introduce the study on how to estimate the confidence interval for the measurement value when only one data (evaluation) point is available. Then, this leads to our example with two human-generated observational scores, for which, we introduce ``Student's \textit{t}-Distribution'' method and explain how to use it to measure the IRR score using only these two data points, as well as the confidence intervals (CIs) of the quality evaluation. We give quantitative analysis on how the evaluation confidence can be greatly improved by introducing more observations, even if only one extra observation. We encourage researchers to report their IRR scores in all possible means, e.g. using Student's \textit{t}-Distribution method whenever possible; thus making the NLP evaluation more meaningful, transparent, and trustworthy. This \textit{t}-Distribution method can be also used outside of NLP fields to measure IRR level for trustworthy evaluation of experimental investigations, whenever the observational data is scarce. Keywords: Inter-Rater Reliability (IRR); Scarce Observations; Confidence Intervals (CIs); Natural Language Processing (NLP); Translation Quality Evaluation (TQE); Student's \textit{t}-Distribution


翻译:在自然语言处理( NLP) 中,我们总是依赖人类判断作为黄金质量评估方法。然而,对于如何更好地评估某些评价任务,例如翻译质量评价(TQE),特别是当数据样本(观察)非常稀少时,我们总是依赖人类判断作为黄金质量评估方法。在这项工作中,我们首先提出在只有一个数据(评价)点时如何估计测量值的可信度间隔的研究。然后,这导致我们举了两个人为观测分的例子,为此,我们采用了“Stustant's textit{t}分配法”的方法,并解释了如何使用该方法来衡量翻译质量评估的可靠性水平,特别是当数据样本(观察)非常少时,我们首先提出如何通过引入更多的观察来大大改善评估可信度。我们鼓励研究人员报告其IRR的分数,例如使用学生的读数{t} QL- disriction ; 尽可能地使用Silvial_Recial_Recial_Relieflial_ reviation 。</s>

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年4月29日
Arxiv
0+阅读 · 2023年4月28日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
38+阅读 · 2020年3月10日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员