The Erd\H{o}s-R\'enyi random graph is the simplest model for node degree distribution, and it is one of the most widely studied. In this model, pairs of $n$ vertices are selected and connected uniformly at random with probability $p$, consequently, the degrees for a given vertex follow the binomial distribution. If the number of vertices is large, the binomial can be approximated by Normal using the Central Limit Theorem, which is often allowed when $\min (np, n(1-p)) > 5$. This is true for every node independently. However, due to the fact that the degrees of nodes in a graph are not independent, we aim in this paper to test whether the degrees of per node collectively in the Erd\H{o}s-R\'enyi graph have a multivariate normal distribution MVN. A chi square goodness of fit test for the hypothesis that binomial is a distribution for the whole set of nodes is rejected because of the dependence between degrees. Before testing MVN we show that the covariance and correlation between the degrees of any pair of nodes in the graph are $p(1-p)$ and $1/(n-1)$, respectively. We test MVN considering two assumptions: independent and dependent degrees, and we obtain our results based on the percentages of rejected statistics of chi square, the $p$-values of Anderson Darling test, and a CDF comparison. We always achieve a good fit of multivariate normal distribution with large values of $n$ and $p$, and very poor fit when $n$ or $p$ are very small. The approximation seems valid when $np \geq 10$. We also compare the maximum likelihood estimate of $p$ in MVN distribution where we assume independence and dependence. The estimators are assessed using bias, variance and mean square error.


翻译:Erd\H{o}s- R\'enyi 随机图是节点分布的最简单模式, 这是最广泛研究的模型之一 。 在这个模型中, 选择一对一对一元的螺旋, 并且任意连接, 概率为 $ p美元, 因此, 给定的顶点的度会跟随二进制分布。 如果脊椎的数量很大, 则使用中央限制理论来比喻二进制的二进制分布。 当美元( np, n1- p) 值大于 5美元时, 通常允许使用常态的偏差模式。 对于每个节点的数值, 独立比较都是如此。 然而, 由于一个图形中的节点程度并不独立, 我们的目标是测试每个节点的度, 美元( 美元) 双进制的正数( 美元) 和双进制的正数( 美元) 。 当我们测试一个基点时, 我们的正数和正数( 美元) 的正态和正态( ) 显示一个基数( 10进制) 和正数( 我们的正态) 。</s>

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2023年4月28日
Arxiv
0+阅读 · 2023年4月28日
Arxiv
19+阅读 · 2020年7月13日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员