This paper proposes a taxonomy of semantic information in robot-assisted disaster response. Robots are increasingly being used in hazardous environment industries and emergency response teams to perform various tasks. Operational decision-making in such applications requires a complex semantic understanding of environments that are remote from the human operator. Low-level sensory data from the robot is transformed into perception and informative cognition. Currently, such cognition is predominantly performed by a human expert, who monitors remote sensor data such as robot video feeds. This engenders a need for AI-generated semantic understanding capabilities on the robot itself. Current work on semantics and AI lies towards the relatively academic end of the research spectrum, hence relatively removed from the practical realities of first responder teams. We aim for this paper to be a step towards bridging this divide. We first review common robot tasks in disaster response and the types of information such robots must collect. We then organize the types of semantic features and understanding that may be useful in disaster operations into a taxonomy of semantic information. We also briefly review the current state-of-the-art semantic understanding techniques. We highlight potential synergies, but we also identify gaps that need to be bridged to apply these ideas. We aim to stimulate the research that is needed to adapt, robustify, and implement state-of-the-art AI semantics methods in the challenging conditions of disasters and first responder scenarios.
翻译:本文建议对机器人辅助灾害应对工作中的语义信息进行分类。 机器人正越来越多地用于危险环境行业和应急反应小组,以履行各种任务。 此类应用中的业务决策要求对远离人类操作者的环境进行复杂的语义理解。 机器人的低层次感官数据被转化成感知和知情认知。 目前,这种认知主要由一位人类专家进行,该专家监测遥控传感器数据,如机器人视频传输。 这就需要人工智能生成的机器人本身的语义理解能力。 目前有关语义学和AI的工作是面向研究范围相对学术的端端,因此相对地脱离了第一个反应小组的实际现实。 我们的目标是使本文件成为弥合这一鸿沟的一个步骤。 我们首先审查灾害应对中常见的机器人任务和这类机器人必须收集的信息类型。 然后,我们组织可能用于灾害操作的语义特征和理解的种类,将其转化为对语义信息本身的分类。 我们还简要地审查当前状态的语义学和人工智能的工作,从而相对脱离了第一个反应小组的实际现实。 我们的目标是使这一论文成为弥合,我们需要将这些研究中的潜在协同性, 来调整这些思维方式。