Knowledge management systems (KMS) are in high demand for industrial researchers, chemical or research enterprises, or evidence-based decision making. However, existing systems have limitations in categorizing and organizing paper insights or relationships. Traditional databases are usually disjoint with logging systems, which limit its utility in generating concise, collated overviews. In this work, we briefly survey existing approaches of this problem space and propose a unified framework that utilizes relational databases to log hierarchical information to facilitate the research and writing process, or generate useful knowledge from references or insights from connected concepts. Our framework of bidirectional knowledge management system (BKMS) enables novel functionalities encompassing improved hierarchical note-taking, AI-assisted brainstorming, and multi-directional relationships. Potential applications include managing inventories and changes for manufacture or research enterprises, or generating analytic reports with evidence-based decision making.
翻译:对工业研究人员、化学或研究企业或循证决策的知识管理系统(KMS)需求很大,但现有系统在分类和组织纸面见解或关系方面有局限性,传统数据库通常与伐木系统脱节,限制了其制作简明、整理概览的效用,在这项工作中,我们简要地调查了这一问题空间的现有办法,并提出了一个统一框架,利用关系数据库来记录等级信息,以便利研究和编写过程,或从相关概念的参考或洞察中获取有用的知识。我们的双向知识管理系统(BKMS)框架提供了新的功能,包括改进分级记录、AI辅助集思广益和多向关系。潜在应用包括管理制造或研究企业的库存和变化,或产生具有循证决策依据的分析报告。