Computing systems form the backbone of many areas in our society, from manufacturing to traffic control, healthcare, and financial systems. When software plays a vital role in the design, construction, and operation, these systems are referred as software-intensive systems. Self-adaptation equips a software-intensive system with a feedback loop that either automates tasks that otherwise need to be performed by human operators or deals with uncertain conditions. Such feedback loops have found their way to a variety of practical applications; typical examples are an elastic cloud to adapt computing resources and automated server management to respond quickly to business needs. To gain insight into the motivations for applying self-adaptation in practice, the problems solved using self-adaptation and how these problems are solved, and the difficulties and risks that industry faces in adopting self-adaptation, we performed a large-scale survey. We received 184 valid responses from practitioners spread over 21 countries. Based on the analysis of the survey data, we provide an empirically grounded overview of state-of-the-practice in the application of self-adaptation. From that, we derive insights for researchers to check their current research with industrial needs, and for practitioners to compare their current practice in applying self-adaptation. These insights also provide opportunities for the application of self-adaptation in practice and pave the way for future industry-research collaborations.


翻译:计算机系统构成我们社会许多领域的主干,从制造到交通管制、保健和财务系统。当软件在设计、建造和操作中发挥重要作用时,这些系统被称为软件密集型系统。自我适应为软件密集型系统配备了一个反馈环,使原本需要由人类操作者执行的任务自动化,或处理不确定的条件。这种反馈环找到了各种实际应用的途径;典型的例子是一个有弹性的云,可调整计算资源和自动服务器管理,以迅速满足商业需要。为了深入了解在实践中应用自我适应的动机、通过自我适应解决和如何解决这些问题的问题,以及工业界在采用自我适应方面所面临的困难和风险,我们进行了一次大规模的调查。我们从分布在21个国家的从业人员那里收到了184份有效的答复。根据对调查数据的分析,我们从经验上概述了应用自我适应技术方面的最新做法。我们从这个角度为研究人员了解了如何在实际应用自我适应、如何通过自我适应和如何解决这些问题,以及这些行业在采用自我适应方法时所面临的困难和风险。我们从21个国家的从业人员那里获得了184份有效的答复。我们从调查数据的分析中,从经验上概述了应用自我适应自我适应技术的先进做法。我们从此为研究人员了解了如何运用目前的研究方法,并比较了如何应用这些经验实践。我们还利用了工业实践的机会,以便将自己的实践应用。

0
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
专知会员服务
60+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Anomalous Instance Detection in Deep Learning: A Survey
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
VIP会员
相关VIP内容
专知会员服务
60+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员