In supervised learning, smoothing label or prediction distribution in neural network training has been proven useful in preventing the model from being over-confident, and is crucial for learning more robust visual representations. This observation motivates us to explore ways to make predictions flattened in unsupervised learning. Considering that human-annotated labels are not adopted in unsupervised learning, we introduce a straightforward approach to perturb input image space in order to soften the output prediction space indirectly, meanwhile, assigning new label values in the unsupervised frameworks accordingly. Despite its conceptual simplicity, we show empirically that with the simple solution -- Unsupervised image mixtures (Un-Mix), we can learn more robust visual representations from the transformed input. Extensive experiments are conducted on CIFAR-10, CIFAR-100, STL-10, Tiny ImageNet and standard ImageNet with popular unsupervised methods SimCLR, BYOL, MoCo V1&V2, etc. Our proposed image mixture and label assignment strategy can obtain consistent improvement by 1~3% following exactly the same hyperparameters and training procedures of the base methods.


翻译:在有监督的学习中,神经网络培训中的光滑标签或预测分布被证明有助于防止模型过于自信,对于学习更稳健的视觉表现至关重要。 这一观察促使我们探索如何在无人监督的学习中实现预测的平坦化。考虑到在无人监督的学习中没有采用带有人文附加说明的标签,我们引入了一种直接的方法来干扰输入图像空间,以便间接地缩小输出预测空间,与此同时,在未经监督的框架中相应分配新的标签值。尽管其概念简单,但我们从经验上表明,通过简单的解决方案 -- -- 未经监督的图像混合物(Un-Mix),我们可以从转变的投入中学习更稳健的视觉表现。在CIFAR-10、CIFAR-100、STL-10、Tiny图像网和标准图像网络上进行了广泛的实验,使用流行的不受监督的方法SimCLR、BYOL、MOCOV1和V2等,我们拟议的图像混合和标签分配战略可以持续改进1~3%,在完全按照超常的超光度参数和基本方法的培训程序之后,我们提议的图像组合和标签分配战略可以持续改进1~3%。

0
下载
关闭预览

相关内容

【google】监督对比学习,Supervised Contrastive Learning
专知会员服务
31+阅读 · 2020年4月23日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Continual Unsupervised Representation Learning
Arxiv
7+阅读 · 2019年10月31日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员