To operate safely and efficiently alongside human workers, collaborative robots (cobots) require the ability to quickly understand the dynamics of manipulated objects. However, traditional methods for estimating the full set of inertial parameters rely on motions that are necessarily fast and unsafe (to achieve a sufficient signal-to-noise ratio). In this work, we take an alternative approach: by combining visual and force-torque measurements, we develop an inertial parameter identification algorithm that requires slow or 'stop-and-go' motions only, and hence is ideally tailored for use around humans. Our technique, called Homogeneous Part Segmentation (HPS), leverages the observation that man-made objects are often composed of distinct, homogeneous parts. We combine a surface-based point clustering method with a volumetric shape segmentation algorithm to quickly produce a part-level segmentation of a manipulated object; the segmented representation is then used by HPS to accurately estimate the object's inertial parameters. To benchmark our algorithm, we create and utilize a novel dataset consisting of realistic meshes, segmented point clouds, and inertial parameters for 20 common workshop tools. Finally, we demonstrate the real-world performance and accuracy of HPS by performing an intricate 'hammer balancing act' autonomously and online with a low-cost collaborative robotic arm. Our code and dataset are open source and freely available.
翻译:为了与人类工人一起安全有效地运作,协作机器人(机器人)需要能够快速理解被操纵物体的动态。然而,估算整套惯性参数的传统方法依赖于必然快速和不安全的运动(以达到足够的信号对噪音比率为目的)。在这项工作中,我们采取了另一种办法:通过将视觉和力-托克测量结合起来,我们开发了惯性参数识别算法,仅要求缓慢或“停止和运行”动作,因此适合人类使用。我们的技术,称为“智能部分分割”(HPS)利用了对人造物体通常由独特、同质部分组成的观察。我们把基于地表的点组合法与量形形状分解算法结合起来,以快速产生被操纵物体的局部分解;然后由HPS用来准确估计物体的惯性参数。为了测量我们的算法,我们创建并使用由现实的模组、分点云和20个通用车间工具的惯性参数组成的新数据集。最后,我们将基于地面的点集点组合的组合式模型和一个可操作的系统化的系统化模型,我们通过一个可操作的系统化的系统化的系统化的系统化数据源码,以显示一个可操作的系统-稳定的系统-世界数据。