The histogram estimator of a discrete probability mass function often exhibits undesirable properties related to zero probability estimation both within the observed range of counts and outside into the tails of the distribution. To circumvent this, we formulate a novel second-order discrete kernel smoother based on the recently developed mean-parametrized Conway--Maxwell--Poisson distribution which allows for both over- and under-dispersion. Two automated bandwidth selection approaches, one based on a simple minimization of the Kullback--Leibler divergence and another based on a more computationally demanding cross-validation criterion, are introduced. Both methods exhibit excellent small- and large-sample performance. Computational results on simulated datasets from a range of target distributions illustrate the flexibility and accuracy of the proposed method compared to existing smoothed and unsmoothed estimators. The method is applied to the modelling of somite counts in earthworms, and the number of development days of insect pests on the Hura tree.


翻译:离散概率质量函数的直方图估计器往往显示出与所观察到的数数范围内和外向分布尾部的零概率估计值有关的不良特性。为绕过这一特性,我们根据最近开发的允许超散和低散分布的近似平衡-马克斯韦尔-波西松分布,制作了一个新的第二阶离散内核滑动器。两种自动带宽选择方法,一种基于简单最小化库尔回背-利伯尔差异,另一种基于更具有计算要求的交叉校验标准。两种方法都表现出极好的小型和大型模量性性性能。从一系列目标分布中模拟数据集的计算结果表明拟议方法与现有光滑和无吸附的估测器相比的灵活性和准确性。该方法适用于土虫中索地点计数的建模,以及胡拉树上的昆虫生长日数。

0
下载
关闭预览

相关内容

【ACML2020】张量网络机器学习:最近的进展和前沿,109页ppt
专知会员服务
54+阅读 · 2020年12月15日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
108+阅读 · 2020年6月10日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月14日
Arxiv
0+阅读 · 2021年10月11日
Arxiv
0+阅读 · 2021年10月9日
Arxiv
0+阅读 · 2021年10月8日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员