Randomized smoothing is currently considered the state-of-the-art method to obtain certifiably robust classifiers. Despite its remarkable performance, the method is associated with various serious problems such as ``certified accuracy waterfalls'', certification vs. accuracy trade-off, or even fairness issues. Input-dependent smoothing approaches have been proposed to overcome these flaws. However, we demonstrate that these methods lack formal guarantees and so the resulting certificates are not justified. We show that the input-dependent smoothing, in general, suffers from the curse of dimensionality, forcing the variance function to have low semi-elasticity. On the other hand, we provide a theoretical and practical framework that enables the usage of input-dependent smoothing even in the presence of the curse of dimensionality, under strict restrictions. We present one concrete design of the smoothing variance and test it on CIFAR10 and MNIST. Our design solves some of the problems of classical smoothing and is formally underlined, yet further improvement of the design is still necessary.


翻译:目前,自成一体的平滑方法被认为是目前最先进的获得可证实可靠的稳健分类方法。尽管这种方法表现出色,但它与各种严重问题相关,例如“经认证的准确瀑布 ” 、 认证与准确性权衡,甚至公正问题等。提出了依靠投入的平滑方法,以克服这些缺陷。然而,我们证明这些方法缺乏正式保障,因此由此产生的证书是站不住脚的。我们表明,从总体上看,依赖投入的平滑方法受到维度的诅咒的影响,迫使差异功能具有低的半弹性。另一方面,我们提供了一个理论和实践框架,允许在严格的限制下,即使在存在多元性诅咒的情况下,使用依赖投入的平滑。我们提出了一个具体的设计,以平衡差异,并在CIFAR10和MNIST上进行测试。我们的设计解决了一些典型的平滑问题,并正式强调,但仍然需要进一步改进设计。

0
下载
关闭预览

相关内容

IJCAI2020接受论文列表,592篇论文pdf都在这了!
专知会员服务
63+阅读 · 2020年7月16日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Arxiv
0+阅读 · 2021年12月3日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Top
微信扫码咨询专知VIP会员