Computable Stein discrepancies have been deployed for a variety of applications, ranging from sampler selection in posterior inference to approximate Bayesian inference to goodness-of-fit testing. Existing convergence-determining Stein discrepancies admit strong theoretical guarantees but suffer from a computational cost that grows quadratically in the sample size. While linear-time Stein discrepancies have been proposed for goodness-of-fit testing, they exhibit avoidable degradations in testing power -- even when power is explicitly optimized. To address these shortcomings, we introduce feature Stein discrepancies ($\Phi$SDs), a new family of quality measures that can be cheaply approximated using importance sampling. We show how to construct $\Phi$SDs that provably determine the convergence of a sample to its target and develop high-accuracy approximations -- random $\Phi$SDs (R$\Phi$SDs) -- which are computable in near-linear time. In our experiments with sampler selection for approximate posterior inference and goodness-of-fit testing, R$\Phi$SDs perform as well or better than quadratic-time KSDs while being orders of magnitude faster to compute.
翻译:各种应用都采用了可测量的斯坦因差异,从事后推断的抽样选择到近似巴伊西亚的推论,到近似于优美的测试。现有的趋同-确定斯坦因差异承认了强有力的理论保障,但受到的计算成本在抽样规模中成倍增长。虽然提出了用于优美测试的线性时间斯坦差异,但它们在测试能力方面显示出可避免的退化 -- -- 即使在电力明确优化的情况下也是如此。为了解决这些缺陷,我们引入了斯坦因差异(Phi$SDs),这是一套新的质量措施,使用重要取样可以廉价地比较近似质量措施。我们展示了如何建造美元-Phi$SDSD,可明显确定样品与其目标的趋同,并开发高精确的近线性准值 -- -- 随机的美元/Phi$(R$\Phi$SDs) -- -- 在近线性时间可以比较。我们测试采样者选择近似的事后推断值和优美测试时,我们用重要取样员的试验中,R$/PhiSDDDDD值在快速度上表现得快或更好。