In an influential critique of empirical practice, Freedman (2008) showed that the linear regression estimator was biased for the analysis of randomized controlled trials under the randomization model. Under Freedman's assumptions, we derive exact closed-form bias corrections for the linear regression estimator with and without treatment-by-covariate interactions. We show that the limiting distribution of the bias corrected estimator is identical to the uncorrected estimator, implying that the asymptotic gains from adjustment can be attained without introducing any risk of bias. Taken together with results from Lin (2013), our results show that Freedman's theoretical arguments against the use of regression adjustment can be completely resolved with minor modifications to practice.
翻译:Freedman(2008年)在对经验实践的有影响力的批评中,Freedman(2008年)指出,线性回归估计值在随机化模式下随机控制试验的分析中存在偏差。根据Freidman的假设,我们对线性回归估计值进行严格的封闭式偏差纠正,无论是否进行逐项处理互动。我们表明,纠正的偏差的有限分布与未校正估计值相同,这意味着调整产生的无保障收益可以在不引入偏见风险的情况下实现。我们的结果与Lin(2013年)的结果一起表明,Freedman反对使用回归调整的理论论点可以通过对实践稍作修改而完全解决。