When testing multiple hypotheses, a suitable error rate should be controlled even in exploratory trials. Conventional methods to control the False Discovery Rate (FDR) assume that all p-values are available at the time point of test decision. In platform trials, however, treatment arms enter and leave the trial at any time during its conduct. Therefore, the number of treatments and hypothesis tests is not fixed in advance and hypotheses are not tested at once, but sequentially. Recently, for such a setting the concept of online control of the FDR was introduced. We investigate the LOND procedure to control the online FDR in platform trials and propose an extension to allow for interim analyses with the option of early stopping for efficacy or futility for individual hypotheses. The power depends sensitively on the prior distribution of effect sizes, e.g., whether true alternatives are uniformly distributed over time or not. We consider the choice of design parameters for the LOND procedure to maximize the overall power and compare the OBrien-Fleming group-sequential design with the Pocock approach. Finally we investigate the impact on error rates by including both concurrent and non-concurrent control data.


翻译:当测试多种假设时,即使是在试探性试验中,也应控制适当的误差率。控制假发现率(FDR)的常规方法假定,在测试决定的时间点,所有p值都可用。但是,在平台试验中,处理武器在试验期间随时进入试验并离开试验,因此,治疗和假设试验的数目没有事先固定,假设试验没有同时进行,而是顺序试验。最近,为了建立这种设置,采用了FDR的在线控制概念。我们调查LOND程序,在平台试验中控制在线FDR(FDR),并提出延期建议,允许进行临时分析,选择及早停止对个别假设的功效或无效性进行早期检查。这种权力取决于先前的效应大小分布,例如,真正的替代品是否在时间上统一分布,我们考虑LOND程序的设计参数的选择,以尽量扩大总的力量,并将Obrien-Fleming集团序列设计与Pocock 方法进行比较。最后,我们通过包括同时和非对数据的控制,对误差率的影响进行调查。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
LibRec 精选:位置感知的长序列会话推荐
LibRec智能推荐
3+阅读 · 2019年5月17日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2022年2月21日
Arxiv
0+阅读 · 2022年2月19日
VIP会员
相关VIP内容
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
相关资讯
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
LibRec 精选:位置感知的长序列会话推荐
LibRec智能推荐
3+阅读 · 2019年5月17日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员