The distributed Hill estimator is a divide-and-conquer algorithm for estimating the extreme value index when data are stored in multiple machines. In applications, estimates based on the distributed Hill estimator can be sensitive to the choice of the number of the exceedance ratios used in each machine. Even when choosing the number at a low level, a high asymptotic bias may arise. We overcome this potential drawback by designing a bias correction procedure for the distributed Hill estimator, which adheres to the setup of distributed inference. The asymptotically unbiased distributed estimator we obtained, on the one hand, is applicable to distributed stored data, on the other hand, inherits all known advantages of bias correction methods in extreme value statistics.
翻译:分布式的山顶估计值是用于在数据存储于多台机器时估算极端值指数的分而治之算法。 在应用程序中,基于分布式山顶估计值的估计数可以敏感地选择每台机器所使用的超常比率。即使低层次选择数字,也可能出现高度的悬浮偏差。我们通过为分布式山顶估计值设计一个偏差纠正程序来克服这一潜在的缺陷,该程序遵循了分布式推断的设置。我们获得的无差别分布式估计值一方面适用于分布式的存储数据,另一方面则继承了极端价值统计中偏见纠正方法的所有已知优势。