Modern statistical applications often involve minimizing an objective function that may be nonsmooth and/or nonconvex. This paper focuses on a broad Bregman-surrogate algorithm framework including the local linear approximation, mirror descent, iterative thresholding, DC programming and many others as particular instances. The recharacterization via generalized Bregman functions enables us to construct suitable error measures and establish global convergence rates for nonconvex and nonsmooth objectives in possibly high dimensions. For sparse learning problems with a composite objective, under some regularity conditions, the obtained estimators as the surrogate's fixed points, though not necessarily local minimizers, enjoy provable statistical guarantees, and the sequence of iterates can be shown to approach the statistical truth within the desired accuracy geometrically fast. The paper also studies how to design adaptive momentum based accelerations without assuming convexity or smoothness by carefully controlling stepsize and relaxation parameters.


翻译:现代统计应用往往涉及尽量减少一种可能非悬浮和(或)非悬浮的客观功能。本文件侧重于一个广泛的布雷格曼代谢算法框架,包括当地线性近似、镜下、迭接阈值、DC编程和其他许多特定实例。通过通用布雷格曼函数的重新定性,使我们能够制定适当的误差计量办法,并为可能高的层面的非混凝土和非混凝土目标确定全球趋同率。对于具有综合目标的稀疏学习问题,在某些常规条件下,获得的定点(尽管不一定是当地最低限点)的估测员享有可核实的统计保证,迭代国的顺序可以显示在期望的精确度以几何速度接近统计事实。本文还研究如何在不假定交融或平稳的情况下,通过仔细控制步骤和放松参数来设计适应性加速度,从而设计以加速度为基础的加速度。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
元学习(Meta Learning)最全论文、视频、书籍资源整理
深度学习与NLP
22+阅读 · 2019年6月20日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【推荐】SLAM相关资源大列表
机器学习研究会
10+阅读 · 2017年8月18日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
18+阅读 · 2021年3月16日
Optimization for deep learning: theory and algorithms
Arxiv
104+阅读 · 2019年12月19日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关资讯
元学习(Meta Learning)最全论文、视频、书籍资源整理
深度学习与NLP
22+阅读 · 2019年6月20日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【推荐】SLAM相关资源大列表
机器学习研究会
10+阅读 · 2017年8月18日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员