Modern statistical applications often involve minimizing an objective function that may be nonsmooth and/or nonconvex. This paper focuses on a broad Bregman-surrogate algorithm framework including the local linear approximation, mirror descent, iterative thresholding, DC programming and many others as particular instances. The recharacterization via generalized Bregman functions enables us to construct suitable error measures and establish global convergence rates for nonconvex and nonsmooth objectives in possibly high dimensions. For sparse learning problems with a composite objective, under some regularity conditions, the obtained estimators as the surrogate's fixed points, though not necessarily local minimizers, enjoy provable statistical guarantees, and the sequence of iterates can be shown to approach the statistical truth within the desired accuracy geometrically fast. The paper also studies how to design adaptive momentum based accelerations without assuming convexity or smoothness by carefully controlling stepsize and relaxation parameters.
翻译:现代统计应用往往涉及尽量减少一种可能非悬浮和(或)非悬浮的客观功能。本文件侧重于一个广泛的布雷格曼代谢算法框架,包括当地线性近似、镜下、迭接阈值、DC编程和其他许多特定实例。通过通用布雷格曼函数的重新定性,使我们能够制定适当的误差计量办法,并为可能高的层面的非混凝土和非混凝土目标确定全球趋同率。对于具有综合目标的稀疏学习问题,在某些常规条件下,获得的定点(尽管不一定是当地最低限点)的估测员享有可核实的统计保证,迭代国的顺序可以显示在期望的精确度以几何速度接近统计事实。本文还研究如何在不假定交融或平稳的情况下,通过仔细控制步骤和放松参数来设计适应性加速度,从而设计以加速度为基础的加速度。