Randomized experiments are the gold standard for causal inference, and justify simple comparisons across treatment groups. Regression adjustment provides a convenient way to incorporate covariate information for additional efficiency. This article provides a unified account of its utility for improving estimation efficiency in multi-armed experiments. We start with the commonly used additive and fully interacted models for regression adjustment, and clarify the trade-offs between the resulting ordinary least-squares (OLS) estimators for estimating average treatment effects in terms of finite-sample performance and asymptotic efficiency. We then move on to regression adjustment based on restricted least squares (RLS), and establish for the first time its properties for inferring average treatment effects from the design-based perspective. The resulting inference has multiple guarantees. First, it is asymptotically efficient when the restriction is correctly specified. Second, it remains consistent as long as the restriction on the coefficients of the treatment indicators, if any, is correctly specified and separate from that on the coefficients of the treatment-covariates interactions. Third, it can have better finite-sample performance than its unrestricted counterpart even if the restriction is moderately misspecified. It is thus our recommendation for covariate adjustment in multi-armed experiments when the OLS fit of the fully interacted regression risks large finite-sample variability in case of many covariates, many treatments, yet a moderate sample size. In addition, the proposed theory of RLS also provides a powerful tool for studying OLS-based inference from general regression specifications. As an illustration, we demonstrate its unique value for studying OLS-based regression adjustment in factorial experiments via both theory and simulation.


翻译:随机化实验是因果推断的黄金标准, 并证明不同治疗组间进行简单比较是有道理的。 递减调整提供了一种方便的方式, 以纳入共变信息, 以提高效率。 本条统一说明其对于提高多控实验中估计效率的效用。 我们从常用的添加和充分互动模型开始, 以回归调整为起点, 并澄清由此产生的普通最小方( OLS) 估计值之间的权衡, 以从有限增量性能和饱和性效率的角度来估计平均治疗效果。 然后, 我们开始根据有限的最小方( RLS) 进行回归调整, 并首次建立其属性, 从设计角度推断平均治疗效果的效用。 由此得出的推论有多重保证。 首先, 当限制得到正确的说明时, 通常最小值( OLS) 估计值的系数( 如果有的话) 与治疗- 相容性反应的系数( ) 。 第三, 以有限的中度( RLS) 递增率( RLS) 推算法的精确度( ) ), 其精确性实验的精确性反应( ) 也通过无限制的数值推算法( ), 大幅变整数级变。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
【斯坦福大学】Gradient Surgery for Multi-Task Learning
专知会员服务
46+阅读 · 2020年1月23日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Linguistically Regularized LSTMs for Sentiment Classification
黑龙江大学自然语言处理实验室
8+阅读 · 2018年5月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2022年2月21日
Arxiv
0+阅读 · 2022年2月21日
Preferential Sampling for Bivariate Spatial Data
Arxiv
0+阅读 · 2022年2月18日
Arxiv
0+阅读 · 2022年2月18日
On Variance Estimation of Random Forests
Arxiv
0+阅读 · 2022年2月18日
VIP会员
相关资讯
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Linguistically Regularized LSTMs for Sentiment Classification
黑龙江大学自然语言处理实验室
8+阅读 · 2018年5月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员