Recent advances in domain adaptation reveal that adversarial learning on deep neural networks can learn domain invariant features to reduce the shift between source and target domains. While such adversarial approaches achieve domain-level alignment, they ignore the class (label) shift. When class-conditional data distributions are significantly different between the source and target domain, it can generate ambiguous features near class boundaries that are more likely to be misclassified. In this work, we propose a two-stage model for domain adaptation called \textbf{C}ontrastive-adversarial \textbf{D}omain \textbf{A}daptation \textbf{(CDA)}. While the adversarial component facilitates domain-level alignment, two-stage contrastive learning exploits class information to achieve higher intra-class compactness across domains resulting in well-separated decision boundaries. Furthermore, the proposed contrastive framework is designed as a plug-and-play module that can be easily embedded with existing adversarial methods for domain adaptation. We conduct experiments on two widely used benchmark datasets for domain adaptation, namely, \textit{Office-31} and \textit{Digits-5}, and demonstrate that CDA achieves state-of-the-art results on both datasets.
翻译:在深神经网络上最近的进展显示,在深神经网络上的对抗性学习可以学习领域差异性特征以减少源与目标领域之间的转移。 虽然这种对抗性方法实现了域级水平对齐, 但却忽略了等级( 标签) 变化。 当等级条件数据分布在源和目标领域之间差异很大时, 它可能会在类界附近产生模糊的特征, 这些特征更有可能被错误划分。 在这项工作中, 我们提议了一个名为\ textbf{ C} 的两阶段域适应模式, 称为\ textb{ textbf{ D} omain\ textb{A} 适应 \ textb{ (CDA)} 。 虽然对抗性方法有助于域级对齐, 两阶段对比性学习利用类信息, 使等级内部更加紧凑, 从而导致清晰划分决定界限。 此外, 拟议的对比性框架设计成一个插件和游戏模块, 很容易嵌入现有的对抗性对域适应方法。 我们在两种广泛使用的基准数据集上进行实验, 即\ textitititIO{D- 5} 和 显示CD- pres 。