Due to the cross-domain distribution shift aroused from diverse medical imaging systems, many deep learning segmentation methods fail to perform well on unseen data, which limits their real-world applicability. Recent works have shown the benefits of extracting domain-invariant representations on domain generalization. However, the interpretability of domain-invariant features remains a great challenge. To address this problem, we propose an interpretable Bayesian framework (BayeSeg) through Bayesian modeling of image and label statistics to enhance model generalizability for medical image segmentation. Specifically, we first decompose an image into a spatial-correlated variable and a spatial-variant variable, assigning hierarchical Bayesian priors to explicitly force them to model the domain-stable shape and domain-specific appearance information respectively. Then, we model the segmentation as a locally smooth variable only related to the shape. Finally, we develop a variational Bayesian framework to infer the posterior distributions of these explainable variables. The framework is implemented with neural networks, and thus is referred to as deep Bayesian segmentation. Quantitative and qualitative experimental results on prostate segmentation and cardiac segmentation tasks have shown the effectiveness of our proposed method. Moreover, we investigated the interpretability of BayeSeg by explaining the posteriors and analyzed certain factors that affect the generalization ability through further ablation studies. Our code will be released via https://zmiclab.github.io/projects.html, once the manuscript is accepted for publication.
翻译:由于不同医学成像系统引发的跨部分布变化,许多深层次的学习分解方法无法很好地利用隐蔽数据,这限制了它们的实际适用性。最近的工作显示,在对域的概括化方面,提取域异性表示法的好处。然而,域异性特性的解释性仍然是一个巨大的挑战。为了解决这个问题,我们提议通过贝叶西亚图像和标签统计模型,建立一个可解释的贝耶西亚框架(BayyeSeg),以加强医学图象分解的模型通用性。具体地说,我们首先将图像分解成一个空间-cor相关变异和空间-变异性手法变量,分配上级的巴耶西亚前文,以明确迫使它们分别建模域稳定形状和特定域外观信息的模型。然后,我们将这种分解作为仅与形状有关的本地平滑易变变量的模型。我们开发了一个可变贝亚框架,用以推断这些可解释变量的后部分布性。这个框架与神经网络一起实施,因此被称为深层贝亚分解变量的变量变量和空间变异性变量变量变量变量变量变量变量变量变量变量变量变量,我们被称作深部分解,因此被提及。 定量和定性前置的高级前置和定性前置分析能力,我们通过预判和定性分析能力 展示分析系统分析方法展示和定性分析方法展示了我们所展示了某些的可判解的方法。 。我们提出的直判读性分析方法,我们研判的常规分析分析方法,通过直判法。我们研算法。 。我们研算法。我们研算法的常规分析性解释了某种研算法的方法,通过直判法。</s>