We consider Linear Stochastic Approximation (LSA) with a constant stepsize and Markovian data. Viewing the joint process of the data and LSA iterate as a time-homogeneous Markov chain, we prove its convergence to a unique limiting and stationary distribution in Wasserstein distance and establish non-asymptotic, geometric convergence rates. Furthermore, we show that the bias vector of this limit admits an infinite series expansion with respect to the stepsize. Consequently, the bias is proportional to the stepsize up to higher order terms. This result stands in contrast with LSA under i.i.d. data, for which the bias vanishes. In the reversible chain setting, we provide a general characterization of the relationship between the bias and the mixing time of the Markovian data, establishing that they are roughly proportional to each other. While Polyak-Ruppert tail-averaging reduces the variance of the LSA iterates, it does not affect the bias. The above characterization allows us to show that the bias can be reduced using Richardson-Romberg extrapolation with $m\ge 2$ stepsizes, which eliminates the $m-1$ leading terms in the bias expansion. This extrapolation scheme leads to an exponentially smaller bias and an improved mean squared error, both in theory and empirically. Our results immediately apply to the Temporal Difference learning algorithm with linear function approximation, Markovian data, and constant stepsizes.


翻译:我们认为,线性软体适应(LSA) 具有恒定的阶梯化和 Markov 数据。 将数据和 LSA的循环作为时间- 均匀的 Markov 链条, 我们证明它与瓦塞斯坦 距离的独特限制和固定分布趋同, 并建立了非非无损的、 几何趋同率。 此外, 我们显示, 这一限制的偏向矢量允许在阶梯化方面进行无限的序列扩张。 因此, 偏差与阶梯化达到更高顺序条件的阶梯化成比例。 这与 i. d. 数据下的 LSA 和 LSA 相反, 偏差会消失。 在可逆的链条设置中, 我们对偏差的偏差和固定分布进行了总体的描述, 并确定了Markovian 数据偏差与不均匀的相容性分布。 虽然 Polyak- Ruppert 尾部调和 lapperate 的偏差性, 但并不影响偏差。 上面的描述让我们显示, 偏差可以使用 Richardson- $- Robbilalal oral ad oralislation oralalization 函数来减少, 导致一个更小的阶值的阶值的阶值的阶梯值的阶值的阶梯值 。

0
下载
关闭预览

相关内容

不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
专知会员服务
60+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年1月19日
VIP会员
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员