项目名称: 分数阶微分方程解的研究

项目编号: No.11626125

项目类型: 专项基金项目

立项/批准年度: 2016

项目学科: 数理科学和化学

项目作者: 王颖

作者单位: 临沂大学

项目金额: 3万元

中文摘要: 本项目主要结合分数阶微积分理论,研究两类非线性分数阶微分方程,从而完善和发展分数阶微分方程边值问题的研究。一方面,研究带有耦合边值条件的分数阶微分方程组,另一方面,研究无穷区间上带有积分边值条件的分数阶微分方程。应用不动点理论,拓扑度方法,单调迭代技巧等非线性泛函分析方法,不仅获得方程解的存在性、非存在性、唯一性、多重性,而且得到方程中参数对解的存在性和非存在性的影响,同时利用Matlab工具,得到具体的实例分析。

中文关键词: 非线性微分方程;边值问题;存在性;解;

英文摘要: The main objective of this project is to study two classes of nonlinear fractional differential equations, combined with the theory of fractional calculus, so as to improve and develop the research in boundary value problems of fractional differential equ

英文关键词: Nonlinear differential equation;Boundary value problems;Existence;Solutions;

成为VIP会员查看完整内容
0

相关内容

【AAAI 2022】神经分段常时滞微分方程
专知会员服务
33+阅读 · 2022年1月14日
专知会员服务
13+阅读 · 2021年10月9日
【开放书】《矩阵流形优化算法》,241页pdf
专知会员服务
93+阅读 · 2021年7月3日
专知会员服务
44+阅读 · 2021年5月24日
专知会员服务
15+阅读 · 2021年3月4日
专知会员服务
72+阅读 · 2020年12月7日
【哈佛经典书】概率论与随机过程及其应用,382页pdf
专知会员服务
61+阅读 · 2020年11月14日
《常微分方程》笔记,419页pdf
专知会员服务
71+阅读 · 2020年8月2日
图神经网络的困境,用微分几何和代数拓扑解决
机器之心
4+阅读 · 2022年3月27日
字节教育,卷到海外
创业邦杂志
0+阅读 · 2022年2月24日
团队“躺平”,你要怎么带?
创业邦杂志
1+阅读 · 2022年2月21日
【AAAI 2022】神经分段常时滞微分方程
专知
2+阅读 · 2022年1月14日
用狄拉克函数来构造非光滑函数的光滑近似
PaperWeekly
0+阅读 · 2021年10月23日
神经网络常微分方程 (Neural ODEs) 解析
AI科技评论
40+阅读 · 2019年8月9日
图解高等数学|线性代数
遇见数学
39+阅读 · 2017年10月18日
【基础数学】- 01
遇见数学
19+阅读 · 2017年7月25日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Deformable Style Transfer
Arxiv
14+阅读 · 2020年3月24日
小贴士
相关主题
相关VIP内容
【AAAI 2022】神经分段常时滞微分方程
专知会员服务
33+阅读 · 2022年1月14日
专知会员服务
13+阅读 · 2021年10月9日
【开放书】《矩阵流形优化算法》,241页pdf
专知会员服务
93+阅读 · 2021年7月3日
专知会员服务
44+阅读 · 2021年5月24日
专知会员服务
15+阅读 · 2021年3月4日
专知会员服务
72+阅读 · 2020年12月7日
【哈佛经典书】概率论与随机过程及其应用,382页pdf
专知会员服务
61+阅读 · 2020年11月14日
《常微分方程》笔记,419页pdf
专知会员服务
71+阅读 · 2020年8月2日
相关资讯
图神经网络的困境,用微分几何和代数拓扑解决
机器之心
4+阅读 · 2022年3月27日
字节教育,卷到海外
创业邦杂志
0+阅读 · 2022年2月24日
团队“躺平”,你要怎么带?
创业邦杂志
1+阅读 · 2022年2月21日
【AAAI 2022】神经分段常时滞微分方程
专知
2+阅读 · 2022年1月14日
用狄拉克函数来构造非光滑函数的光滑近似
PaperWeekly
0+阅读 · 2021年10月23日
神经网络常微分方程 (Neural ODEs) 解析
AI科技评论
40+阅读 · 2019年8月9日
图解高等数学|线性代数
遇见数学
39+阅读 · 2017年10月18日
【基础数学】- 01
遇见数学
19+阅读 · 2017年7月25日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员