Due to the diffusion of IoT, modern software systems are often thought to control and coordinate smart devices in order to manage assets and resources, and to guarantee efficient behaviours. For this class of systems, which interact extensively with humans and with their environment, it is thus crucial to guarantee their correct behaviour in order to avoid unexpected and possibly dangerous situations. In this paper we will present a framework that allows us to measure the robustness of systems. This is the ability of a program to tolerate changes in the environmental conditions and preserving the original behaviour. In the proposed framework, the interaction of a program with its environment is represented as a sequence of random variables describing how both evolve in time. For this reason, the considered measures will be defined among probability distributions of observed data. The proposed framework will be then used to define the notions of adaptability and reliability. The former indicates the ability of a program to absorb perturbation on environmental conditions after a given amount of time. The latter expresses the ability of a program to maintain its intended behaviour (up-to some reasonable tolerance) despite the presence of perturbations in the environment. Moreover, an algorithm, based on statistical inference, it proposed to evaluate the proposed metric and the aforementioned properties. Throughout the paper, two case studies are used to the describe and evaluate the proposed approach.
翻译:由于IoT的传播,现代软件系统常常被认为控制和协调智能装置,以便管理资产和资源,保证有效行为。对于与人类和环境广泛互动的这类系统,至关重要的是保证其正确行为,以避免意外和可能的危险情况;在本文件中,我们将提出一个框架,使我们能够衡量系统是否稳健;这是一个程序能够容忍环境条件的变化并保持原有行为的能力;在提议的框架中,一个程序与环境的互动是随机变量的序列,说明两者如何在时间上演变。因此,考虑过的措施将在所观察到的数据的概率分布中加以界定;然后,拟议的框架将用来界定适应性和可靠性的概念;前者表明一个程序在一定时间后能够吸收环境条件的扰动;后者表示一个程序能够保持其预期行为(最高为某种合理的容忍度),尽管环境存在扰动。此外,根据统计推断,它提出的措施将在所观察到的数据的概率分布中加以界定。拟议的框架将用来界定适应性和可靠性的概念。前者表明一个程序在一定时间之后能够吸收环境条件受到干扰的能力。后者表示一个程序能够保持其预期的行为(最高为某种合理的容忍度),而在环境上存在着扰动性。此外,根据统计推理,它所拟议的测量和估价所使用的研究所使用的方法。