This paper introduces two new abstract morphs for two $2$-dimensional shapes. The intermediate shapes gradually reduce the Hausdorff distance to the goal shape and increase the Hausdorff distance to the initial shape. The morphs are conceptually simple and apply to shapes with multiple components and/or holes. We prove some basic properties relating to continuity, containment, and area. Then we give an experimental analysis that includes the two new morphs and a recently introduced abstract morph that is also based on the Hausdorff distance (Van Kreveld et al. Between shapes, using the Hausdorff distance. Computational Geometry 100:101817, 2022). We show results on the area and perimeter development throughout the morph, and also the number of components and holes. A visual comparison shows that one of the new morphs appears most attractive.
翻译:本文为两个$$2维的形状引入了两个新的抽象形态。 中间形状逐渐将Hausdorf的距离缩小到目标形状, 并将Hausdorf的距离提高到初始形状。 变形在概念上是简单的, 并适用于多个组件和/ 或孔的形状。 我们证明了与连续性、 封闭性和区域有关的一些基本特性。 然后我们进行了实验性分析, 其中包括两个新的变形和最近引入的抽象形态, 也基于Hausdorf的距离( Van Kreveld等人, 在形状之间, 使用Hausdorf 距离。 计算几何学 100: 101817, 2022)。 我们展示了整个变形的面积和周边发展结果, 以及部件和孔的数量。 视觉比较显示, 新变形之一看起来最有吸引力。