Specialised transformers-based models (such as BioBERT and BioMegatron) are adapted for the biomedical domain based on publicly available biomedical corpora. As such, they have the potential to encode large-scale biological knowledge. We investigate the encoding and representation of biological knowledge in these models, and its potential utility to support inference in cancer precision medicine - namely, the interpretation of the clinical significance of genomic alterations. We compare the performance of different transformer baselines; we use probing to determine the consistency of encodings for distinct entities; and we use clustering methods to compare and contrast the internal properties of the embeddings for genes, variants, drugs and diseases. We show that these models do indeed encode biological knowledge, although some of this is lost in fine-tuning for specific tasks. Finally, we analyse how the models behave with regard to biases and imbalances in the dataset.
翻译:基于专门变压器的模型(如生物生物生物交换和生物元件)根据公开的生物医学公司加以调整,用于生物医学领域,因此,这些模型有可能对大规模生物知识进行编码。我们调查这些模型的生物知识的编码和表述,及其在癌症精密医学中支持推断的潜在效用,即对基因基因改变临床意义的解释。我们比较不同的变压器基线的性能;我们使用测试来确定不同实体编码的一致性;我们使用集群方法比较和比较基因、变异体、药物和疾病嵌入器的内部特性。我们表明这些模型确实对生物知识进行了编码,尽管其中一些在微调具体任务时已经丢失了。最后,我们分析了模型如何对待数据集中的偏差和不平衡。