We derive limiting distributions of symmetrized estimators of scatter, where instead of all $n(n-1)/2$ pairs of the $n$ observations we only consider $nd$ suitably chosen pairs, $1 \le d < \lfloor n/2\rfloor$. It turns out that the resulting estimators are asymptotically equivalent to the original one whenever $d = d(n) \to \infty$ at arbitrarily slow speed. We also investigate the asymptotic properties for arbitrary fixed $d$. These considerations and numerical examples indicate that for practical purposes, moderate fixed values of $d$ between,say, $10$ and $20$ yield already estimators which are computationally feasible and rather close to the original ones.
翻译:我们得出了分布分布分布不均的散射估计值,其中我们只考虑1美元/美元/美元等值的一对,而不是零美元/美元观察的一对,我们只考虑1美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/