Hub Labeling (HL) is one of the state-of-the-art preprocessing-based techniques for route planning in road networks. It is a special incarnation of distance labeling, and it is well-studied in both theory and practice. The core concept of HL is to associate a label with each vertex, which consists of a subset of all vertices and respective shortest path information, such that the shortest path distance between any two vertices can be derived from considering the intersection of their labels. HL provides excellent query times but requires a time-consuming preprocessing phase. Therefore, in case of edge cost changes, rerunning the whole preprocessing is not viable. Inspired by the concept of Customizable Route Planning, we hence propose in this paper a Customizable Hub Labeling variant for which the edge costs in the network do not need to be known at construction time. These labels can then be used with any edge costs after conducting a so called customization phase. We study the theoretical properties of Customizable Hub Labelings, provide an $\mathcal{O}(\log^2 n)$-approximation algorithm for the average label size, and propose efficient customization algorithms.
翻译:枢纽拉贝( HL) 是道路网络路线规划的最先进的预处理前处理技术之一。 这是远程标签的特殊化, 它在理论和实践上都得到了很好的研究。 HL 的核心概念是将标签与每个顶点联系起来, 由所有顶点的子集和各自最短路径信息组成, 这样任何两个顶点之间的最短路径距离都可以从考虑其标签的交叉点中得出。 HL 提供极佳的查询时间, 但需要一个耗时的预处理阶段。 因此, 在边缘成本变化的情况下, 重新运行整个预处理是行不通的。 基于可定制路径规划的概念, 我们因此在本文中提出一个可定制的 Hbelb 选项, 其边端成本在施工时不需要知道。 这些标签可以在进行所谓的定制阶段后与任何边端成本一起使用。 我们研究可定制的 枢纽拉贝的理论特性, 提供 $\mathcal{ O} 和 平均Qalicealgal- gasqalgalationalgalgal- gasgalgalgalation $.