Conversational text-to-SQL aims at converting multi-turn natural language queries into their corresponding SQL (Structured Query Language) representations. One of the most intractable problems of conversational text-to-SQL is modelling the semantics of multi-turn queries and gathering the proper information required for the current query. This paper shows that explicitly modelling the semantic changes by adding each turn and the summarization of the whole context can bring better performance on converting conversational queries into SQLs. In particular, we propose two conversational modelling tasks in both turn grain and conversation grain. These two tasks simply work as auxiliary training tasks to help with multi-turn conversational semantic parsing. We conducted empirical studies and achieved new state-of-the-art results on the large-scale open-domain conversational text-to-SQL dataset. The results demonstrate that the proposed mechanism significantly improves the performance of multi-turn semantic parsing.
翻译:连接文本到 SQL 的目的是将多方向自然语言查询转换成相应的 SQL (结构化查询语言) 表达方式。 对话文本到 SQL 最棘手的问题之一是模拟多方向查询的语义,并收集当前查询所需的适当信息。 本文显示, 将每个转弯加上语义变化的清晰模型, 对整个语义的概括可以带来更好的表现, 将对话查询转换为 SQL 。 特别是, 我们提议在转换谷物和对话谷类时执行两个对话模拟任务。 这两项任务只是辅助培训任务, 帮助多方向对话语义的语义分隔。 我们在大规模开放式对话文本到 SQL 数据集上进行了实验性研究, 并取得了新的艺术状态结果。 结果显示, 拟议的机制将显著改善多方向语义拼写功能的性能 。