Selecting the best hyperparameters for a particular optimization instance, such as the learning rate and momentum, is an important but nonconvex problem. As a result, iterative optimization methods such as hypergradient descent lack global optimality guarantees in general. We propose an online nonstochastic control methodology for mathematical optimization. First, we formalize the setting of meta-optimization, an online learning formulation of learning the best optimization algorithm from a class of methods. The meta-optimization problem over gradient-based methods can be framed as a feedback control problem over the choice of hyperparameters, including the learning rate, momentum, and the preconditioner. Although the original optimal control problem is nonconvex, we show how recent methods from online nonstochastic control using convex relaxations can be used to circumvent the nonconvexity, and obtain regret guarantees vs. the best offline solution. This guarantees that in meta-optimization, given a sequence of optimization problems, we can learn a method that attains convergence comparable to that of the best optimization method in hindsight from a class of methods.
翻译:选择特定优化实例的最佳超参数, 如学习率和动力, 是一个重要但非隐蔽的问题。 因此, 迭代优化方法, 如超梯度下降, 一般而言缺乏全球最佳性保障。 我们提出数学优化的在线非随机控制方法。 首先, 我们正式确定元优化的设置, 一种从某类方法中学习最佳优化算法的在线学习公式。 相对于基于梯度方法的元优化问题, 可以作为一个反馈控制问题来看待, 包括学习率、 动力和先决条件。 虽然最初的最佳控制问题是非convex, 我们展示了如何使用在线非随机控制的最新方法, 使用 convex 放松来绕过非机密性, 并获得遗憾保证与最佳离线解决方案的对比。 这保证了在基于梯度的问题序列中实现元优化, 我们可以学到一种方法, 与从某类方法的后置中最优化方法相近于最佳优化方法的趋同。