We study the computational complexity of the non-preemptive scheduling problem of a list of independent jobs on a set of identical parallel processors with a makespan minimization objective. We make a maiden attempt to explore the combinatorial structure showing the exhaustive solution space of the problem by defining the \textit{Scheduling Solution Space Tree (SSST)} data structure. The properties of the \textit{SSST} are formally defined and characterized through our analytical results. We develop a unique technique to show the problem $\mathcal{NP}$ using the SSST and the \textit{Weighted Scheduling Solution Space Tree (WSSST)} data structures. We design the first non-deterministic polynomial-time algorithm named \textit{Magic Scheduling (MS)} for the problem based on the reduction framework. We also define a new variant of multiprocessor scheduling by including the user as an additional input parameter. We formally establish the complexity class of the variant by the reduction principle. Finally, we conclude the article by exploring several interesting open problems for future research investigation.
翻译:我们研究了一组相同的平行处理器上独立工作清单的非先发制人时间安排问题的计算复杂性,并设定了最小化目标。 我们试图通过定义 \ textit{ 列表式空间树(SSST)} 数据结构来探索组合结构, 显示问题的详尽解决空间。\ textit{ 列表式空间树(SSST) 的属性通过分析结果正式界定和定性。 我们开发了一种独特的技术, 利用 SSST 和\ text{Weightd Schluding Solution Spal Tre (WSSST) 数据结构来显示问题 $\ texticulding Sproduction Sproductions 。 我们设计了第一个非决定性的多元时间算法, 名为\ textit{ Magic Scheduling (MS), 用于根据 缩减框架解决问题。 我们还定义了一个新的多处理器调度选项, 将用户列为额外的输入参数 。 我们正式根据 减少 原则 确定变式的复杂性类别 。 最后, 我们通过探索未来研究几个有趣的开放的问题来完成此文章 。