This paper presents a density-based topology optimization approach considering additive manufacturing limitations. The presented method considers the minimum size of parts, the minimum size of cavities, the inability of printing overhanging parts without the use of sacrificial supporting structures, and the printing directions. These constraints are geometrically addressed and implemented. The minimum size on solid and void zones is imposed through a well-known filtering technique. The sacrificial support material is reduced using a constraint that limits the maximum overhang angle of parts by comparing the structural gradient with a critical reference slope. Due to the local nature of the gradient, the chosen restriction is prone to introduce parts that meet the structural slope but that may not be self-supporting. The restriction limits the maximum overhang angle for a user-defined printing direction, which could reduce structural performance if the orientation is not properly selected. To ease these challenges, a new approach to reduce the introduction of such non-self-supporting parts and a novel method that includes different printing directions in the maximum overhang angle constraint are presented. The proposed strategy for considering the minimum size of solid and void phases, maximum overhang angle, and printing direction, is illustrated by solving a set of 2D benchmark design problems including stiff structures and compliant mechanisms. We also provide MATLAB codes in the appendix for educational purposes and for replication of the results.
翻译:本文介绍了考虑到添加制造限制的基于密度的地形优化方法; 所介绍的方法考虑了部件的最小尺寸、 洞穴的最小尺寸、 不使用牺牲性支持结构就无法打印过重部件、 印刷方向。 这些限制是几何式的处理和实施; 固态和空空带的最小尺寸是通过众所周知的过滤技术强加的。 牺牲性支持材料使用一种限制来减少部件的最大悬浮角度,这种限制通过将结构悬浮角度与临界参考斜坡进行比较来限制这些部分的最大悬浮角度。 由于梯度的当地性质,所选择的限制容易引入符合结构斜度但可能不是自我维持的部分。 限制限制了用户定义的打印方向的最大过重角度,如果选择不当,则可能降低结构性能。 为缓解这些挑战,将采用新的办法减少这种非自我维持部分的引进,并采用新的方法,在最大悬浮度角度限制中包括不同的印刷方向。 拟议的考虑固体和空端阶段的最小尺寸、 最大悬浮角度,以及可能无法自我维持的部分。 限制限制限制了用户定义的打印方向,如果选择正确选择,那么,则会减少结构,我们为附录的标准化标准。