Accurate control of robots at high speeds requires a control system that can take into account the kinodynamic interactions of the robot with the environment. Prior works on learning inverse kinodynamic (IKD) models of robots have shown success in capturing the complex kinodynamic effects. However, the types of control problems these approaches can be applied to are limited only to that of following pre-computed kinodynamically feasible trajectories. In this paper we present Optim-FKD, a new formulation for accurate, high-speed robot control that makes use of a learned forward kinodynamic (FKD) model and non-linear least squares optimization. Optim-FKD can be used for accurate, high speed control on any control task specifiable by a non-linear least squares objective. Optim-FKD can solve for control objectives such as path following and time-optimal control in real time, without needing access to pre-computed kinodynamically feasible trajectories. We empirically demonstrate these abilities of our approach through experiments on a scale one-tenth autonomous car. Our results show that Optim-FKD can follow desired trajectories more accurately and can find better solutions to optimal control problems than baseline approaches.
翻译:对高速度机器人的精确控制要求一种能够考虑到机器人与环境的动态相互作用的控制系统。先前的机器人反动动动(IKD)模型学习工作已经表明成功捕捉了复杂的运动动力效应。然而,这些方法可以应用到的控制问题的类型仅限于跟踪预先计算过的运动动力可行的轨迹。在本文中,我们介绍的是最佳-FKD,一种精确、高速机器人控制方法的新配方,它利用了学习过的远前运动(FKD)模型和非线性最小正方形优化。在精确和高速控制任何控制任务时,可以使用非线性最小方形目标所能够检测到的这种控制任务。Optim-FKD可以解决控制目标,例如跟踪路径和实时的时间最佳控制,而不需要访问预先计算过的运动动力动能实用的可行轨迹。我们实验显示这些我们的方法的能力,通过一个规模的自动控制方法可以更精确地显示我们所期望的最佳方法,而能够更精确地显示我们最精确地在一个比例上找到最佳控制方法。