We present a novel neural network architecture called AutoAtlas for fully unsupervised partitioning and representation learning of 3D brain Magnetic Resonance Imaging (MRI) volumes. AutoAtlas consists of two neural network components: one neural network to perform multi-label partitioning based on local texture in the volume, and a second neural network to compress the information contained within each partition. We train both of these components simultaneously by optimizing a loss function that is designed to promote accurate reconstruction of each partition, while encouraging spatially smooth and contiguous partitioning, and discouraging relatively small partitions. We show that the partitions adapt to the subject specific structural variations of brain tissue while consistently appearing at similar spatial locations across subjects. AutoAtlas also produces very low dimensional features that represent local texture of each partition. We demonstrate prediction of metadata associated with each subject using the derived feature representations and compare the results to prediction using features derived from FreeSurfer anatomical parcellation. Since our features are intrinsically linked to distinct partitions, we can then map values of interest, such as partition-specific feature importance scores onto the brain for visualization.
翻译:我们同时展示了一个叫AutoAtlas的新型神经网络结构, 用于完全不受监督的3D脑磁共振成像(MRI)的分解和代表学习。 AutoAtlas由两个神经网络组成部分组成: 一个神经网络, 用于根据体积中的本地质谱进行多标签分解, 第二个神经网络, 压缩每个分块中所含的信息。 我们同时训练这两个组成部分, 优化一个损失功能, 目的是促进每个分区的准确重建, 同时鼓励空间平滑和毗连的分解, 阻止相对较小的分区。 我们显示, 分区适应了大脑组织的特定结构变化, 同时在不同的空间位置上持续出现。 AutoAtlas 也产生了非常低的维度特征, 代表了每个分区的本地质谱。 我们用衍生的特征表来显示与每个主题相关的元数据的预测, 并比较使用从 FreeSurfer解剖包包包中得出的特征进行预测的结果。 由于我们的特征与不同的分区有内在联系, 我们然后可以绘制利益值, 例如, 将分区特定特征重要分级点分到大脑的分位。