This paper introduces Distributed Stein Variational Gradient Descent (DSVGD), a non-parametric generalized Bayesian inference framework for federated learning. DSVGD maintains a number of non-random and interacting particles at a central server to represent the current iterate of the model global posterior. The particles are iteratively downloaded and updated by one of the agents with the end goal of minimizing the global free energy. By varying the number of particles, DSVGD enables a flexible trade-off between per-iteration communication load and number of communication rounds. DSVGD is shown to compare favorably to benchmark frequentist and Bayesian federated learning strategies, also scheduling a single device per iteration, in terms of accuracy and scalability with respect to the number of agents, while also providing well-calibrated, and hence trustworthy, predictions.


翻译:本文介绍分散式 Stein Variation 梯度底部(DSVGD),这是一个用于联合学习的非参数性通用贝叶斯推断框架,DSVGD在一个中央服务器上维持一些非随机和互动的粒子,以代表模型全球后继器的当前迭代。粒子由其中一个代理商进行迭代下载和更新,最终目标是最大限度地减少全球自由能源。DSVGD通过粒子数量的不同,使得实时通信负荷与通信轮数之间的灵活取舍。DSVGD显示,它比照常客和巴伊西亚联邦化学习战略的基准,并且从精确性和可缩放性的角度对各种物剂的数量安排一个单一的迭代点,同时提供精确校准的预测,因而是可信的。

0
下载
关闭预览

相关内容

最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
生成式对抗网络GAN异常检测
专知会员服务
115+阅读 · 2019年10月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年5月19日
Arxiv
19+阅读 · 2020年7月13日
Arxiv
45+阅读 · 2019年12月20日
Arxiv
4+阅读 · 2019年1月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员