We revisit the divide-and-conquer sequential Monte Carlo (DaC-SMC) algorithm and firmly establish it as a well-founded method by showing that it possesses the same basic properties as conventional sequential Monte Carlo (SMC) algorithms do. In particular, we derive pertinent laws of large numbers, $L^p$ inequalities, and central limit theorems; and we characterize the bias in the normalized estimates produced by the algorithm and argue the absence thereof in the unnormalized ones. We further consider its practical implementation and several interesting variants; obtain expressions for its globally and locally optimal intermediate targets, auxiliary measures, and proposal kernels; and show that, in comparable conditions, DaC-SMC proves more statistically efficient than its direct SMC analogue. We close the paper with a discussion of our results, open questions, and future research directions.


翻译:我们重新审视了分而治之相继的蒙特卡洛(DaC-SMC)算法(DaC-SMC),并通过表明它拥有与传统的后继蒙特卡洛(SMC)算法相同的基本特性,将它牢固地确立为一种有充分依据的方法。特别是,我们产生了大量相关的法律、美元不平等和核心限制理论;我们描述了算法产生的标准化估计中的偏差,并争论在未规范的算法中不存在这种偏差。我们进一步考虑其实际实施和若干有趣的变式;获得其全球和地方最佳中间目标、辅助措施和提议核心的表达方式;并表明,在类似条件下,DaC-SMC在统计上比其直接的SMC类比更有效率。我们结束论文时讨论了我们的结果、开放的问题和未来的研究方向。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
专知会员服务
62+阅读 · 2020年3月4日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Arxiv
0+阅读 · 2021年12月31日
Arxiv
0+阅读 · 2021年12月28日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关VIP内容
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Top
微信扫码咨询专知VIP会员