Let $Q_{n}^{r}$ be the graph with vertex set $\{-1,1\}^{n}$ in which two vertices are joined if their Hamming distance is at most $r$. The edge-isoperimetric problem for $Q_{n}^{r}$ is that: For every $(n,r,M)$ such that $1\le r\le n$ and $1\le M\le2^{n}$, determine the minimum edge-boundary size of a subset of vertices of $Q_{n}^{r}$ with a given size $M$. In this paper, we apply two different approaches to prove bounds for this problem. The first approach is a linear programming approach and the second is a probabilistic approach. Our bound derived by the first approach generalizes the tight bound for $M=2^{n-1}$ derived by Kahn, Kalai, and Linial in 1989. Moreover, our bound is also tight for $M=2^{n-2}$ and $r\le\frac{n}{2}-1$. Our bounds derived by the second approach are expressed in terms of the \emph{noise stability}, and they are shown to be asymptotically tight as $n\to\infty$ when $r=2\lfloor\frac{\beta n}{2}\rfloor+1$ and $M=\lfloor\alpha2^{n}\rfloor$ for fixed $\alpha,\beta\in(0,1)$, and is tight up to a factor $2$ when $r=2\lfloor\frac{\beta n}{2}\rfloor$ and $M=\lfloor\alpha2^{n}\rfloor$. In fact, the edge-isoperimetric problem is equivalent to a ball-noise stability problem which is a variant of the traditional (i.i.d.-) noise stability problem. Our results can be interpreted as bounds for the ball-noise stability problem.
翻译:$@ r\ r} 美元是使用顶端设置为$@ 1, 1\ {n} 美元的图表, 其中两个螺旋是结合的, 如果它们的顶端距离最多为$。 美元 的边缘线度问题在于 : 对于每美元( n, r, m) 来说, 1le rle n$ 和 1\le m\ le2} 美元, 确定一个子节的顶端界限大小 $2, 美元 美元 。 在本文中, 我们用两种不同的方法来证明这一问题的界限 。 第一种是线性程序法, 第二种是概率法 。 我们的第一个方法将 $=2\ 美元 美元 美元 和 1989 美元 美元 的紧界值 。 此外, 我们的底端值问题对于 $ =2\\\\\\\ n2\\\\\ r} 美元 和 美元 美元 美元 美元 的底值也非常近, 当我们的底线值显示为 $ = 美元时, 我们的底底值是 的底值 。