We give an exact characterization of admissibility in statistical decision problems in terms of Bayes optimality in a so-called nonstandard extension of the original decision problem, as introduced by Duanmu and Roy. Unlike the consideration of improper priors or other generalized notions of Bayes optimalitiy, the nonstandard extension is distinguished, in part, by having priors that can assign "infinitesimal" mass in a sense that can be made rigorous using results from nonstandard analysis. With these additional priors, we find that, informally speaking, a decision procedure $\delta_0$ is admissible in the original statistical decision problem if and only if, in the nonstandard extension of the problem, the nonstandard extension of $\delta_0$ is Bayes optimal among the extensions of standard decision procedures with respect to a nonstandard prior that assigns at least infinitesimal mass to every standard parameter value. We use the above theorem to give further characterizations of admissibility, one related to Blyth's method, one to a condition due to Stein which characterizes admissibility under some regularity assumptions; and finally, a characterization using finitely additive priors in decision problems meeting certain regularity requirements. Our results imply that Blyth's method is a sound and complete method for establishing admissibility. Buoyed by this result, we revisit the univariate two-sample common-mean problem, and show that the Graybill--Deal estimator is admissible among a certain class of unbiased decision procedures.


翻译:与Duamu 和 Roy提出的对Bayes 最优性统计决定问题的可接受性,在所谓的原决定问题的非标准延期中,我们确切地描述在Bayes 最优性统计决定问题的可接受性,这是Duamu 和 Roy提出的。与对Bayes 最优性不适当的前期或其他普遍概念的考虑不同,非标准延期部分地区别于对非标准性决定程序的可严格地分配“无限”质量的前期,这种前期可以使用非标准性分析的结果,而这种前期分析可以严格地加以严格。我们发现,在非正式地说,在原统计决定问题的非标准延期中,只有在问题的非标准延期中,非标准性延长 $\del_0美元是巴耶斯最优性的,非标准性扩展部分是通过非标准性的前期决定程序,至少给每个标准参数值分配无限性质量。我们用以上理论来进一步描述可接受性的定性,一个与Blyth 方法有关的前期方法,一个因斯坦在正常性假设下具有可接受性特点的条件;最后,使用固定性标准性标准性评估性程序的定性分析方法表明我们通常性的结果。

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
专知会员服务
52+阅读 · 2020年9月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月19日
Risk and optimal policies in bandit experiments
Arxiv
0+阅读 · 2022年4月18日
VIP会员
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员