Recent studies have significantly enhanced the performance of single-image super-resolution (SR) using convolutional neural networks (CNNs). While there can be many high-resolution (HR) solutions for a given input, most existing CNN-based methods do not explore alternative solutions during the inference. A typical approach to obtaining alternative SR results is to train multiple SR models with different loss weightings and exploit the combination of these models. Instead of using multiple models, we present a more efficient method to train a single adjustable SR model on various combinations of losses by taking advantage of multi-task learning. Specifically, we optimize an SR model with a conditional objective during training, where the objective is a weighted sum of multiple perceptual losses at different feature levels. The weights vary according to given conditions, and the set of weights is defined as a style controller. Also, we present an architecture appropriate for this training scheme, which is the Residual-in-Residual Dense Block equipped with spatial feature transformation layers. At the inference phase, our trained model can generate locally different outputs conditioned on the style control map. Extensive experiments show that the proposed SR model produces various desirable reconstructions without artifacts and yields comparable quantitative performance to state-of-the-art SR methods.
翻译:最近的研究大大提高了使用进化神经网络(CNNs)的单一图像超分辨率(SR)的性能。虽然对特定输入可能有许多高分辨率(HR)的解决方案,但大多数现有的CNN方法并不在推论期间探索其他解决办法。获取替代性SR结果的典型办法是培训具有不同减重的多种SR模型并利用这些模型的组合。我们不使用多种模型,而是提出一种更有效的方法,利用多任务学习,对各种损失组合进行单一可调整的SR模型培训。具体地说,我们在培训期间优化一个带有有条件目标的SR模型,目标是在不同特性层次上对多种感知损失进行加权总和。根据不同条件,加权法的权重被界定为一种样式控制器。此外,我们提出了适合这一培训计划的架构,即具有空间特征变化层次的残余内反常量性硬块。在推断阶段,我们经过培训的模型可以产生不同的地方性产出模型,在样式控制图上设定有条件的。我们的目标是在不同特征层次上进行多重感知觉损失的加权质量实验。根据特定条件进行。根据不同程度的SAR(SR)重新制作了各种可计量的实验,以显示拟议的状态。