Relation-focused cross-modal information retrieval focuses on retrieving information based on relations expressed in user queries, and it is particularly important in information retrieval applications and next-generation search engines. To date, CLIP (Contrastive Language-Image Pre-training) achieved state-of-the-art performance in cross-modal learning tasks due to its efficient learning of visual concepts from natural language supervision. However, CLIP learns visual representations from natural language at a global level without the capability of focusing on image-object relations. This paper proposes a novel CLIP-based network for Relation Reasoning, CLIP-RR, that tackles relation-focused cross-modal information retrieval. The proposed network utilises CLIP to leverage its pre-trained knowledge, and it additionally comprises two main parts: (1) extends the capabilities of CLIP to extract and reason with object relations in images; and (2) aggregates the reasoned results for predicting the similarity scores between images and descriptions. Experiments were carried out by applying the proposed network to relation-focused cross-modal information retrieval tasks on the RefCOCOg, CLEVR, and Flickr30K datasets. The results revealed that the proposed network outperformed various other state-of-the-art networks including CLIP, VSE$\infty$, and VSRN++ on both image-to-text and text-to-image cross-modal information retrieval tasks.


翻译:以关系为重点的跨模式信息检索侧重于根据用户询问中表达的关系检索信息,这在信息检索应用程序和下一代搜索引擎中特别重要。迄今为止,CLIP(培训前语言图像控制)由于高效地从自然语言监督中学习视觉概念,在跨现代学习任务中实现了最先进的业绩。然而,CLIP从自然语言中学习自然语言的视觉表现,而没有能力关注图像-对象的交叉关系。本文提议建立一个基于CLIP的新网络,即基于CLIP的Relational realoging,CLIP-RR,处理以关系为重点的跨模式信息检索。拟议的网络利用CLIP利用其预先培训的知识,还包含两个主要部分:(1)扩展CLIP的能力,提取和解释图像中对象关系;(2)汇总预测图像和描述之间相似性分数的合理结果。通过将拟议的网络应用以关系为重点的跨模式信息检索任务,包括REfCOIP30和Flickral-SE-SE-SE-SE-SE-SE-RA FRAS-R-FRADR-S-R-RAD-R-RAD-R-RVRAD-FRAD-R-S-S-R-R-R-R-R-R-R-R-RVRAVAC-R-R-R-R-R-R-S-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-L-L-L-R-R-R-R-R-R-R-R-R-RVADR-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
50+阅读 · 2022年10月2日
专知会员服务
61+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
16+阅读 · 2021年11月27日
Arxiv
18+阅读 · 2021年6月10日
Arxiv
12+阅读 · 2020年6月20日
A survey on deep hashing for image retrieval
Arxiv
14+阅读 · 2020年6月10日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员