Burst super-resolution (SR) technique provides a possibility of restoring rich details from low-quality images. However, since real world low-resolution (LR) images in practical applications have multiple complicated and unknown degradations, existing non-blind (e.g., bicubic) designed networks usually suffer severe performance drop in recovering high-resolution (HR) images. In this paper, we address the problem of reconstructing HR images from raw burst sequences acquired from a modern handheld device. The central idea is a kernel-guided strategy which can solve the burst SR problem with two steps: kernel estimation and HR image restoration. The former estimates burst kernels from raw inputs, while the latter predicts the super-resolved image based on the estimated kernels. Furthermore, we introduce a pyramid kernel-aware deformable alignment module which can effectively align the raw images with consideration of the blurry priors. Extensive experiments on synthetic and real-world datasets demonstrate that the proposed method can perform favorable state-of-the-art performance in the burst SR problem. Our codes are available at \url{https://github.com/shermanlian/KBNet}.
翻译:超级分辨率(SR)技术提供了从低质量图像中恢复丰富细节的可能性。然而,由于实际应用中真实世界低分辨率(LR)图像存在多重复杂和未知的降解,现有非盲人(例如双立方)设计网络在恢复高分辨率图像方面通常会遭遇严重性能下降。在本文件中,我们处理从现代手持设备获取的原始爆破序列中重建HR图像的问题。核心理念是一个内核导战略,它可以通过两个步骤解决爆破的SR问题:内核估计和HR图像恢复。以前的估计数从原始输入中爆出内核,而后者预测基于估计内核的超级溶解图像。此外,我们引入了一个金字塔内核分解调整模块,该模块可以有效地将原始图像与对模糊前的考虑相匹配。关于合成和真实世界数据集的广泛实验表明,拟议的方法可以在爆发SR问题中产生有利的状态-艺术性能。我们的代码可以在{Krampral/Qurth.rangral/Qralmas.