The k-space data generated from magnetic resonance imaging (MRI) is only a finite sampling of underlying signals. Therefore, MRI images often suffer from low spatial resolution and Gibbs ringing artifacts. Previous studies tackled these two problems separately, where super resolution methods tend to enhance Gibbs artifacts, whereas Gibbs ringing removal methods tend to blur the images. It is also a challenge that high resolution ground truth is hard to obtain in clinical MRI. In this paper, we propose an unsupervised learning framework for both MRI super resolution and Gibbs artifacts removal without using high resolution ground truth. Furthermore, we propose regularization methods to improve the model's generalizability across out-of-distribution MRI images. We evaluated our proposed methods with other state-of-the-art methods on eight MRI datasets with various contrasts and anatomical structures. Our method not only achieves the best SR performance but also significantly reduces the Gibbs artifacts. Our method also demonstrates good generalizability across different datasets, which is beneficial to clinical applications where training data are usually scarce and biased.
翻译:磁共振成像(MRI)生成的 k- 空间数据只是对基本信号的有限抽样。 因此, MRI 图像往往具有低空间分辨率和 Gibbs 响铃文物。 先前的研究分别解决了这两个问题, 超分辨率方法往往会增强Gibs 文物, 而 Gibs 响铃清除方法往往模糊图像。 临床磁共振成像( MRI) 也很难获得高分辨率地面真实性。 在本文中, 我们提议了一个不受监督的MRI 超级分辨率和 Gibs 文物清除学习框架, 而不使用高分辨率地面分辨率。 此外, 我们提议了正规化方法, 以改善模型在分布式MRI 图像之间的通用性。 我们用其他最先进的方法评估了我们提出的方法, 八个MRI 数据集中存在各种对比和解剖结构。 我们的方法不仅达到最好的SR 性能, 而且还大大降低了 Gibbs 。 我们的方法还展示了不同数据集之间的良好通用性, 这有利于临床应用, 在培训数据通常稀缺和偏差错的地方, 。