The last decades are marked by massive and diverse image data, which shows increasingly high resolution and quality. However, some images we obtained may be corrupted, affecting the perception and the application of downstream tasks. A generic method for generating a high-quality image from the degraded one is in demand. In this paper, we present a novel GAN inversion framework that utilizes the powerful generative ability of StyleGAN-XL for this problem. To ease the inversion challenge with StyleGAN-XL, Clustering \& Regularize Inversion (CRI) is proposed. Specifically, the latent space is firstly divided into finer-grained sub-spaces by clustering. Instead of initializing the inversion with the average latent vector, we approximate a centroid latent vector from the clusters, which generates an image close to the input image. Then, an offset with a regularization term is introduced to keep the inverted latent vector within a certain range. We validate our CRI scheme on multiple restoration tasks (i.e., inpainting, colorization, and super-resolution) of complex natural images, and show preferable quantitative and qualitative results. We further demonstrate our technique is robust in terms of data and different GAN models. To our best knowledge, we are the first to adopt StyleGAN-XL for generating high-quality natural images from diverse degraded inputs. Code is available at https://github.com/Booooooooooo/CRI.
翻译:过去几十年的特点是,大量多样的图像数据,显示的分辨率和质量越来越高。然而,我们获得的一些图像可能会受到腐蚀,影响下游任务的认识和应用。一种从退化的图像生成高质量图像的通用方法需要。在本文中,我们提出了一个新型GAN反向框架,利用StyleGAN-XL对该问题的强大基因化能力。为了通过StyleGAN-XL来缓解反向挑战,我们提议对“StyleGAN-XL”进行分组(CRI) 。具体地说,我们获得的一些潜在空间可能首先被分为精细微的子空间,通过集群来影响感知和应用下游任务。我们没有开始与平均潜值矢量矢量矢量的反向转换,而是从这些组开始一个近于输入图像图像的中间值潜在矢量值值值值值值值值值值值值值值值值值值值值。然后,我们验证我们关于多重恢复任务(即粉刷、彩色化和超分辨率)的CRIA计划。我们进一步展示了我们最优秀的定量和定性模型,我们从GAN生成的自然标准值值值值数据是高的。我们从GL数据,然后产生高的自然标准,然后产生高度数据。我们又产生高度数据。