We describe a new algorithm for vertex cover with runtime $O^*(1.25284^k)$, where $k$ is the size of the desired solution and $O^*$ hides polynomial factors in the input size. This improves over previous runtime of $O^*(1.2738^k)$ due to Chen, Kanj, & Xia (2010) standing for more than a decade. The key to our algorithm is to use a potential function which simultaneously tracks $k$ as well as the optimal value $\lambda$ of the vertex cover LP relaxation. This approach also allows us to make use of prior algorithms for Maximum Independent Set in bounded-degree graphs and Above-Guarantee Vertex Cover. The main step in the algorithm is to branch on high-degree vertices, while ensuring that both $k$ and $\mu = k - \lambda$ are decreased at each step. There can be local obstructions in the graph that prevent $\mu$ from decreasing in this process; we develop a number of novel branching steps to handle these situations.
翻译:我们描述了一种新的顶点覆盖算法,其运行时间为$O^*(1.25284^k)$,其中$k$是所需解的大小,$O^*$隐藏了输入大小的多项式因子。这改进了之前的运行时间$O^*(1.2738^k)$,其持续了十多年,由Chen,Kanj和Xia(2010)提出。我们算法的关键是使用一种位势函数,同时跟踪$k$和顶点覆盖线性规划松弛的最优值$\lambda$。这种方法还允许我们利用有关有限度图中最大独立集和高保证率顶点覆盖的先前算法。算法的主要步骤是在高度顶点上分支,同时确保每一步都减少$k$和$\mu=k-\lambda$。在这个过程中,可能会存在阻碍$\mu$减小的局部障碍;我们开发了许多新的分支步骤来处理这些情况。