Classification is the task of assigning a new instance to one of a set of predefined categories based on the attributes of the instance. A classification tree is one of the most commonly used techniques in the area of classification. In this paper, we introduce a novel classification tree algorithm which we call Direct Nonparametric Predictive Inference (D-NPI) classification algorithm. The D-NPI algorithm is completely based on the Nonparametric Predictive Inference (NPI) approach, and it does not use any other assumption or information. The NPI is a statistical methodology which learns from data in the absence of prior knowledge and uses only few modelling assumptions, enabled by the use of lower and upper probabilities to quantify uncertainty. Due to the predictive nature of NPI, it is well suited for classification, as the nature of classification is explicitly predictive as well. The D-NPI algorithm uses a new split criterion called Correct Indication (CI). The CI is about the informativity that the attribute variables will indicate, hence, if the attribute is very informative, it gives high lower and upper probabilities for CI. The CI reports the strength of the evidence that the attribute variables will indicate, based on the data. The CI is completely based on the NPI, and it does not use any additional concepts such as entropy. The performance of the D-NPI classification algorithm is tested against several classification algorithms using classification accuracy, in-sample accuracy and tree size on different datasets from the UCI machine learning repository. The experimental results indicate that the D-NPI classification algorithm performs well in terms of classification accuracy and in-sample accuracy.


翻译:D-NPI算法是完全基于非参数预测推理法(NPI)的方法,它不使用任何其他假设或信息。NPI是一种统计方法,在缺乏先前知识的情况下从数据中学习,仅使用很少的建模假设,这是在分类领域最常用的技术之一。在本文中,我们引入了一种新型的分类树算法,我们称之为“直接非参数预测推理(D-NPI)”的分类算法。D-NPI算法完全基于非参数预测预测性预测推理(NPI)方法,它不使用任何其他假设或信息。NPI是一种统计方法,它从数据中学习,在缺乏先前知识的情况下,它只使用很少的建模假设假设,而利用低和高的概率假设,从而得以量化不确定性。由于NPII的预测性能的预测性能,因此它非常适合进行分类。由于NPI的预测性,因此,在NPI的精确性等级中,它使用多少个数值的精确性,因此,在DNA分类中,它使用多少个数值的精确性是用来评估。

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
【新书】Python数据科学食谱(Python Data Science Cookbook)
专知会员服务
114+阅读 · 2020年1月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
0+阅读 · 2021年10月14日
Arxiv
13+阅读 · 2019年1月26日
Arxiv
3+阅读 · 2018年6月18日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员