Implicit Processes (IPs) are flexible priors that can describe models such as Bayesian neural networks, neural samplers and data generators. IPs allow for approximate inference in function-space. This avoids some degenerate problems of parameter-space approximate inference due to the high number of parameters and strong dependencies. For this, an extra IP is often used to approximate the posterior of the prior IP. However, simultaneously adjusting the parameters of the prior IP and the approximate posterior IP is a challenging task. Existing methods that can tune the prior IP result in a Gaussian predictive distribution, which fails to capture important data patterns. By contrast, methods producing flexible predictive distributions by using another IP to approximate the posterior process cannot fit the prior IP to the observed data. We propose here a method that can carry out both tasks. For this, we rely on an inducing-point representation of the prior IP, as often done in the context of sparse Gaussian processes. The result is a scalable method for approximate inference with IPs that can tune the prior IP parameters to the data, and that provides accurate non-Gaussian predictive distributions.
翻译:隐性过程(IP)是灵活的前置,可以描述贝耶斯神经网络、神经采样器和数据生成器等模型。 IP允许在功能空间中进行近似推断。 这避免了参数-空间近似推理的某些退化问题, 原因是参数数量众多, 且依赖性强。 为此, 额外IP通常用于近似先前IP的后部。 但是, 同时调整先前IP的参数和近似后部IP的参数是一项艰巨的任务。 现有的方法可以调和以前的IP, 导致高斯预测分布, 无法捕捉重要的数据模式。 相比之下, 使用另一种 IP 生成灵活的预测分布的方法, 通过使用另一种 IP 来接近远端进程来产生灵活的预测分布, 无法适应观察到的数据 。 我们在此提出一种方法可以执行这两个任务 。 对此, 我们依赖前IP 的导出点代表, 通常在稀疏高斯进程背景下这样做 。 其结果是一种可扩缩的方法, 用以估计IP 与能够使先前IP 参数与数据相近, 并且提供准确的非 GAS 。