Vector-symbolic architectures (VSAs) provide methods for computing which are highly flexible and carry unique advantages. Concepts in VSAs are represented by 'symbols,' long vectors of values which utilize properties of high-dimensional spaces to represent and manipulate information. In this new work, we combine efficiency of the operations provided within the framework of the Fourier Holographic Reduced Representation (FHRR) VSA with the power of deep networks to construct novel VSA based residual and attention-based neural network architectures. Using an attentional FHRR architecture, we demonstrate that the same network architecture can address problems from different domains (image classification and molecular toxicity prediction) by encoding different information into the network's inputs, similar to the Perceiver model. This demonstrates a novel application of VSAs and a potential path to implementing state-of-the-art neural models on neuromorphic hardware.
翻译:矢量- 声波结构(VSAs) 提供了非常灵活且具有独特优势的计算方法。 VSA 中的概念由“符号”和长长的值矢量代表,这些值矢量利用高维空间的特性来代表和操控信息。在这项新的工作中,我们将Fourier全方位减少代表(FHRR) VSA框架内提供的运作效率与深层网络的力量结合起来,以构建基于VSA的新型残余和以关注为基础的神经网络结构。我们利用关注性FHRR 结构,证明同样的网络结构可以通过将不同信息输入网络投入中(图像分类和分子毒性预测)解决不同领域的问题(图像分类和分子毒性预测),类似于 Perceiver模型。这显示了VSAs的新应用以及神经形态硬件实施最新神经模型的潜在途径。