Visual Question Answering (VQA) is a task that requires computers to give correct answers for the input questions based on the images. This task can be solved by humans with ease but is a challenge for computers. The VLSP2022-EVJVQA shared task carries the Visual Question Answering task in the multilingual domain on a newly released dataset: UIT-EVJVQA, in which the questions and answers are written in three different languages: English, Vietnamese and Japanese. We approached the challenge as a sequence-to-sequence learning task, in which we integrated hints from pre-trained state-of-the-art VQA models and image features with Convolutional Sequence-to-Sequence network to generate the desired answers. Our results obtained up to 0.3442 by F1 score on the public test set, 0.4210 on the private test set, and placed 3rd in the competition.


翻译:视觉问答(VQA)是一项任务,需要计算机基于图像给出正确的回答。这项任务对于人类来说很容易解决,但对于计算机来说却是个挑战。VLSP2022-EVJVQA 共享任务针对面向多语言领域的视觉问答任务提供了一个新的数据集:UIT-EVJVQA,其中问题和答案用三种不同语言编写:英语、越南语和日语。我们将这个挑战看作是一个序列到序列学习任务,将预训练的最先进 VQA 模型和图像特征的细节与卷积序列到序列网络相结合,生成所需的答案。我们的结果在公共测试集上达到了0.3442的 F1 分数,在私有测试集上达到了0.4210的 F1 分数,并在竞赛中获得第三名。

0
下载
关闭预览

相关内容

视觉问答(Visual Question Answering,VQA),是一种涉及计算机视觉和自然语言处理的学习任务。这一任务的定义如下: A VQA system takes as input an image and a free-form, open-ended, natural-language question about the image and produces a natural-language answer as the output[1]。 翻译为中文:一个VQA系统以一张图片和一个关于这张图片形式自由、开放式的自然语言问题作为输入,以生成一条自然语言答案作为输出。简单来说,VQA就是给定的图片进行问答。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
百篇论文纵览大型语言模型最新研究进展
专知会员服务
69+阅读 · 2023年3月31日
【CVPR2022】MSDN: 零样本学习的互语义蒸馏网络
专知会员服务
20+阅读 · 2022年3月8日
【文本生成现代方法】Modern Methods for Text Generation
专知会员服务
43+阅读 · 2020年9月11日
【ICLR-2020】网络反卷积,NETWORK DECONVOLUTION
专知会员服务
38+阅读 · 2020年2月21日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
国家自然科学基金
3+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
12+阅读 · 2022年1月26日
Exploring Visual Relationship for Image Captioning
Arxiv
15+阅读 · 2018年9月19日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
相关基金
国家自然科学基金
3+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员