Given a connected graph on whose edges we can build roads to connect the nodes, a number of agents hold possibly different perspectives on which edges should be selected by assigning different edge weights. Our task is to build a minimum number of roads so that every agent has a spanning tree in the built subgraph whose weight is the same as a minimum spanning tree in the original graph. We first show that this problem is NP-hard and does not admit better than $((1-o(1))\ln k)$-approximation polynomial-time algorithms unless P=NP, where $k$ is the number of agents. We then give a simple voting algorithm with an optimal approximation ratio. Moreover, our algorithm only needs to access the agents' rankings on the edges. Finally, we extend our results to submodular objective functions and Matroid rank constraints.
翻译:根据一个连接的图表,我们可以在哪些边缘建造道路连接节点,一些代理商对哪些边缘应当通过分配不同的边缘重量来选择持有不同的观点。我们的任务是建立最低限度的道路数量,以便每个代理商在建筑的子图中都有一棵横贯的树,其重量与原始图形中最小的横贯树相同。我们首先显示,这个问题是硬的,不承认比$(1-o(1)\ lnk) 更优于$(1-o(1)\ nk) 的多级平衡算法,除非P=NP, 美元是代理商的数量。然后我们给出一个简单的投票算法,其最优近似比率。此外,我们的算法只需要访问边缘的代理商的排名。最后,我们将我们的结果扩大到亚模式目标函数和数学等级限制。