Background: Mendelian randomization (MR) is a useful approach to causal inference from observational studies when randomised controlled trials are not feasible. However, study heterogeneity of two association studies required in MR is often overlooked. When dealing with large studies, recently developed Bayesian MR is limited by its computational expensiveness. Methods: We addressed study heterogeneity by proposing a random effect Bayesian MR model with multiple exposures and outcomes. For large studies, we adopted a subset posterior aggregation method to tackle the problem of computation. In particular, we divided data into subsets and combine estimated subset causal effects obtained from the subsets". The performance of our method was evaluated by a number of simulations, in which part of exposure data was missing. Results: Random effect Bayesian MR outperformed conventional inverse-variance weighted estimation, whether the true causal effects are zero or non-zero. Data partitioning of large studies had little impact on variations of the estimated causal effects, whereas it notably affected unbiasedness of the estimates with weak instruments and high missing rate of data. Our simulation results indicate that data partitioning is a good way of improving computational efficiency, for little cost of decrease in unbiasedness of the estimates, as long as the sample size of subsets is reasonably large. Conclusions: We have further advanced Bayesian MR by including random effects to explicitly account for study heterogeneity. We also adopted a subset posterior aggregation method to address the issue of computational expensiveness of MCMC, which is important especially when dealing with large studies. Our proposed work is likely to pave the way for more general model settings, as Bayesian approach itself renders great flexibility in model constructions.


翻译:在随机控制的试验不可行的情况下,门德罗随机化(MR)是一种有用的方法,用于观察性研究的因果关系推断。然而,研究MR要求的两项关联研究的异质性常常被忽视。在处理大型研究时,最近开发的Bayesian MRM受到计算成本昂贵的限制。方法:我们通过提出具有多种暴露和结果的Bayesian MR随机效应模型来研究异质性。在大型研究中,我们采用子集子集法来解决计算问题。特别是,我们将数据分成子集,并结合从子集获得的估计子集因果关系。我们的方法的性能通过若干模拟来评估,其中缺少部分暴露数据。结果:随机效应Bayesian MRMM(MM)的MR(MM)(M)(MM)(M)(M)(M)(M)(M) (M) (M) (M) (M(M) (M) (M) (M(M) (M) (M) (M) (M(M) (M) (M) (M) (M(M) (M(M) (M) (M) (M) (M(M) (M) (M(M) (M) (M(M) (M) (M) (M(M) (M) (M(M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M) (M(M) (M) (M) (M) (M) (M) (M) (M(M) (M) (M) (M) (M) (M) (M(M) (M) (M) (M(M) (M) (M) (M) (M) (M) (M(M) (M) (M) (M) (M) (M) (M(M) (M) (M) (M) (M) (M) (M(M(M) (M) (M) () () () () () () () () () () () () () ((M) (M) (M) (M) ((M) ((M) ((M)) (

0
下载
关闭预览

相关内容

磁流变(Magnetorheological,简称MR)材料是一种流变性能可由磁场控制的新型智能材料。由于其响应快(ms量级)、可逆性好(撤去磁场后,又恢复初始状态)、以及通过调节磁场大小来控制材料的力学性能连续变化,因而近年来在汽车、建筑、振动控制等领域得到广泛应用。
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Robust Learning in Heterogeneous Contexts
Arxiv
0+阅读 · 2022年2月17日
Arxiv
0+阅读 · 2022年2月16日
VIP会员
相关VIP内容
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员