Consider a situation where a new patient arrives in the Intensive Care Unit (ICU) and is monitored by multiple sensors. We wish to assess relevant unmeasured physiological variables (e.g., cardiac contractility and output and vascular resistance) that have a strong effect on the patients diagnosis and treatment. We do not have any information about this specific patient, but, extensive offline information is available about previous patients, that may only be partially related to the present patient (a case of dataset shift). This information constitutes our prior knowledge, and is both partial and approximate. The basic question is how to best use this prior knowledge, combined with online patient data, to assist in diagnosing the current patient most effectively. Our proposed approach consists of three stages: (i) Use the abundant offline data in order to create both a non-causal and a causal estimator for the relevant unmeasured physiological variables. (ii) Based on the non-causal estimator constructed, and a set of measurements from a new group of patients, we construct a causal filter that provides higher accuracy in the prediction of the hidden physiological variables for this new set of patients. (iii) For any new patient arriving in the ICU, we use the constructed filter in order to predict relevant internal variables. Overall, this strategy allows us to make use of the abundantly available offline data in order to enhance causal estimation for newly arriving patients. We demonstrate the effectiveness of this methodology on a (non-medical) real-world task, in situations where the offline data is only partially related to the new observations. We provide a mathematical analysis of the merits of the approach in a linear setting of Kalman filtering and smoothing, demonstrating its utility.
翻译:考虑一下新病人在强化护理股(ICU)中抵达并由多个传感器监测的新病人的情况。 我们希望评估对病人诊断和治疗有重大影响的相关非计量生理变数(如心脏萎缩和输出以及血管抗药性),我们没有关于这个特定病人的任何信息,但是我们没有关于这个特定病人的任何信息,但是,关于以前的病人的广泛的离线信息可能只是部分与目前的病人有关(一个数据集转换的案例)。这种信息构成我们先前的知识,是部分和大约的。基本问题是,如何最好地利用这一先前的知识,加上在线病人数据,协助对目前病人进行最有效的诊断。我们提议的办法包括三个阶段:(一) 使用丰富的离线数据,以便创造非闭路和因果关系的估计数,而这些信息可能只是部分与目前的病人有关(一个数据集的计算基础,以及一组新的病人的数学测算方法,我们建造一个因果过滤器,提供更准确的病人观察结果,以预测目前病人的准确度。 (三) 利用大量离线的离线数据,我们为新的病人的测算结果,让我们在新的变数中进行新的测算。