In this paper, we introduce a new simple approach to developing and establishing the convergence of splitting methods for a large class of stochastic differential equations (SDEs), including additive, diagonal and scalar noise types. The central idea is to view the splitting method as a replacement of the driving signal of an SDE, namely Brownian motion and time, with a piecewise linear path that yields a sequence of ODEs -- which can be discretised to produce a numerical scheme. This new way of understanding splitting methods is inspired by, but does not use, rough path theory. We show that when the driving piecewise linear path matches certain iterated stochastic integrals of Brownian motion, then a high order splitting method can be obtained. We propose a general proof methodology for establishing the strong convergence of these approximations that is akin to the general framework of Milstein and Tretyakov. That is, once local error estimates are obtained for the splitting method, then a global rate of convergence follows. This approach can then be readily applied in future research on SDE splitting methods. By incorporating recently developed approximations for iterated integrals of Brownian motion into these piecewise linear paths, we propose several high order splitting methods for SDEs satisfying a certain commutativity condition. In our experiments, which include the Cox-Ingersoll-Ross model and additive noise SDEs (noisy anharmonic oscillator, stochastic FitzHugh-Nagumo model, underdamped Langevin dynamics), the new splitting methods exhibit convergence rates of $O(h^{3/2})$ and outperform schemes previously proposed in the literature.


翻译:在本文中,我们引入了一种新的简单方法,为一大批类类类随机差异方程式(SDEs)制定和确立分解方法的趋同,包括添加、对角和卡路里噪音类型。核心思想是将分解方法视为SDE驱动信号的替代,即布朗尼运动和时间,以片段线性路径产生一个代码序列,可以产生一个数字方案序列。这种新的理解分解方法受粗路径理论的启发,但不使用粗路径理论。我们表明,当驱动片断路径与布朗运动的某些循环性动态组合相匹配时,就可以找到一个高顺序分解方法。我们提出了一种一般性的证明方法,用以确定这些近似于米尔斯坦和特雷特亚科夫总框架的驱动信号的分解方法。这就是,一旦获得当地对分解法模型的误差估计,然后是全球的趋同率。然后可以在SDE分解方法的未来研究中很容易应用这一方法。我们最近制定的分解法分解了布朗运动的某些分流法,其中含有某种分流的分流方法。在Sdeal-rodal-halal-halalalal-rodaltototo rodal rographis rois rois rod rois rod rod rodal rod rout rod routs routs routs routs routs routs routs routs routs routs routs rod routs routs rout routs rod rod rod ro rod rod rod rod ro rod rod ro ro rod rod rod rod rod rod rod rod rod rops rod rops rops rops rod rodal rodal ro ro ro ro ro ro ro rod ro ro ro ro ro ro ro ro ro ro ro ro rodal rodal ro rops ro ro ro ro ro

0
下载
关闭预览

相关内容

【如何做研究】How to research ,22页ppt
专知会员服务
108+阅读 · 2021年4月17日
专知会员服务
25+阅读 · 2021年4月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
101+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年12月20日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员